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Abstract

SEQUEL [Tar93a] is a new language built on top of Lisp and designed for implementing
theorem provers and proof assistants. It includes a type theory for Lisp (XTT — eXtended Type
Theory) and functions for sequent calculus and rewriting systems.

nqgthm [BM79], a theorem prover for untyped Lisp, is a powerful tool for proving properties
of functions. Producing a framework written in SEQUEL, which implements a similar system
for the typed Lisp of SEQUEL could add an important feature to the type-checker.

The project presented here involves a description of such a framework, and the implementation
details of programming such a system in SEQUEL’s sequent calculus notation.

The framework, called INDUCT, is based on the theory laid out in Boyer and Moore’s 1979
Book ‘A Computational Logic’. The current versions of nqthm are more powerful in some ways
and less in others — relying on the user giving more information, allowing deeper search through
a narrower search space.

INDUCT is designed to make available to the user various levels of interaction in the proof
of theorems, and to make use of the validity of the SEQUEL type-checker to narrow its search
space and shorten its proofs. It also includes some refinements which have been suggested since
the original text.

The project has been limited to producing a framework dealing with Natural Numbers and
Lists. Extension of the framework to other Lisp types and then to user-defined SEQUEL types
should be possible, since little of the framework is dependent upon the nature of the types, merely
upon the theoretical requirements common to INDUCT and nqthm. Areas which would require
more than rudimentary changes to achieve these ends will be highlighted and suggestions made
as to how these changes could be implemented.

Finally, it will be shown how INDUCT can be used as a substitute for nqthm in the areas it
does cover, and how the SEQUEL proof tool and the interaction with the framework can enable

a user to produce valid proofs.
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Chapter 1

Introduction

SEQUEL is a new language developed by Mark Tarver at Leeds. Much of the philosophy of
SEQUEL derives from the ‘proof as type-checking’ principle put forward by him in [Tar93a].

This principle may be taken a step further, in an obvious fashion: if proof is equivalent to
type-checking, then since program verification is merely proof, the process of verification can
also be reduced to type-checking. The type-checking thus required would of course be far more
involved than for example testing a program to ensure that particular functions are only given
integers as inputs. For instance we might wish to show that the tail recursive version of a function
is equivalent to the simple recursive form. Verification of such conditions requires inductive proof.

The theory and implementation of inductive proof for a subset of Lisp has had much work
done on 1t over the last twenty-odd years, the most well-known being the theory described in
[BM79], which was the basis of the theorem prover nqthm. However, nqthm took a team of
researchers a number of years to produce. Since SEQUEL has been designed for the implement-
ation of theorem proving environments, implementing a framework to perform inductive proofs
over the Lisp expressions produced by the SEQUEL compiler would seem much simpler than
the implementation of nqthm. With the succinctness of code and the tools for theorem prover
implementation provided by SEQUEL, it seemed feasible to undertake the production of a basic
system as an MSc project.

The problems with such an undertaking are the translation of the logic represented by Boyer
and Moore in [BM79] to a sequent calculus notation as used by SEQUEL, and the coding of the
constructive nature of this logic into SEQUEL?’s fairly static structure.

The resulting framework is only the first step in constructing a version of SEQUEL including
the advanced features implied. It is however a very necessary first step, which has been done

with a view to further work in this area.



Chapter 2

An Overview of SEQUEL

SEQUEL is a new functional language designed and implemented by Mark Tarver to enable
the rapid prototyping of Proof Assistants (PAs) and Automated Theorem Provers (ATPs) by
reducing the amount of code required for such systems. It is built in and on top of Lisp, and
splits neatly into two sections: the core language (which allows access to all Lisp functions) and

the sequent calculus extensions.

2.1 The Core Language

The top level of SEQUEL, as with all functional programming languages, is similar to the
command level of a text-input operating system. The user types in a command or expression,
which the system reads, evaluates to produce a result, and prints that result. This is called the
read-eval-print loop. The simplest expressions are ones which do not change in the evaluation,
such as integers (1, 2, 3, ...) and symbols (a, b, zyz, ...). These expressions are called self-
evaluating expressions because they evaluate to themselves. A more complex expression consists
of the application of a function to a set of arguments, for example (+ 1 3), which evaluates to 4,
the result of applying the function + to the arguments 1 and 3. The arguments of a function call
need not be self-evaluating expressions, but can themselves be function calls. BNF grammars
for various portions of SEQUEL, including the top-level, can be found in Appendix A. Core
SEQUEL has a syntax derived from Prolog. W, z, y, z and any symbol ending with ¢ are
variables, and lists are constructed using [ | and |. Thus [1] is the list containing the single
element 1, [1 2 3] is the list containing three elements 1, 2 and 3 in that order and:
m2 @l=023 =023

SEQUEL is a rewrite language, in which functions are specified by means of a list of rewrite
rules, of the form iy i35 ... ¢, — o, where all the variables in the formal result o must also appear
in the formal arguments iy, 15, ...4,. A rule is applicable if the formal arguments can be matched
with the actual arguments. Matching these arguments requires the same structure for both, given
that variables in the formal arguments will match with any structure in the actual arguments,
although any variable which appears more than once within i1,4s,...4, will only match with the

same structure in both positions. If two or more rules could both be applied (such rules being
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referred to as being in conflict) then the rule appearing first in the function definition is applied.

This is called a priority ordering. So, a test for zero can be written thus:

0 -> true

x => false

where the second rule could be applied to the input 0, except that the first rule will always have
fired on this input.

As well as the requirements for the formal arguments to match with the actual arguments,
extra conditions may be placed on the firing of a rule. These conditions, called guards, are
evaluated in the order that they appear. Evaluation of guards and tests for a match between
formal and actual arguments are carried out in lazy fashion, where guards and tests for matching
are evaluated one at a time, and the result of each evaluation checked before evaluating the next
in the sequence. The alternative route is called eager evaluation, where all the evaluations are
performed first, and then the results are checked to see if they match the requirements. So, with

lazy evaluation, for a rule

x (foo x) [y z | w] -> (bar w x y 2)

the structure of the second actual argument will only be checked if (foo x) returns ¢. If any of
the guards returns the value nil then the rule does not fire, and the next rule in the definition of
the function will be applied. The SEQUEL code below shows how to define a modulus function

using guards.

(defun modulus
xy Kxy)—>x

x y => (modulus (- x y) y))

Backtracking is a useful feature of many functional and logic programming languages, but it
is often implemented in a confusing and complicated manner. SEQUEL’s backtracking is em-
bodied in the principle of semantic backtracking, which is straightforward to use, and allows easy
understanding of the flow of control within a function. A faiure object is defined, and semantic
backtracking is indicated by using a left hand arrow instead of a right hand arrow for the rule.
If the actual output of a rule using a left hand arrow is the failure object then execution passes
down the list of rules as if the rule had not fired. The easiest way to return the failure object is
to use the function fail. Thus we might have:

(define nqueen

x > (nqueen2 x [] 1))

(define nqueen?
n? pos? _ (equal (length pos?) n?) -> pos?
n? pos? x (> x n?) -> (fail)

n? pos? x



(not (member x pos?))
(ng-consistent x (reverse pos?) 1)
<- (nqueen2 n? [pos? <> [x]] 1)

n? pos? x -> (nqueen2 n? pos? (1+ x)))

(define nq-consistent
-O_->1
x [pos? | poss?] n? (equal (abs (- x pos?)) n?) -> nil

x [_ | poss?] n? -> (nq-consistent x poss? (1+ n7)))

which calculates a solution to the problem of placing n queens on an n x n chessboard so that
none of them can take another in one move. (The underscore character in the input patterns
represents a place-holder, which introduces a new anonymous variable each time it occurs in a
rule. It is used to improve clarity and gains some slight improvement in the speed of compilation

to Lisp code.)

The other way to produce the failure object is to use the function fail-if. Instead of fail being
a possible result of an output, fau-if may be used to test the result of an output, so that in place
of i1 iy ...1, o, we have iy 1y ...4, < (fail-if A-ezpression o), where the A-expression is an
anonymous function of a single argument. If the result of evaluating the A-expression is nil then
backtracking occurs, otherwise the result of evaluating o is returned. Fail is used in the result
function, when it is possible to detect failure during its execution. Faul-if is used when failure

can only be detected once the result function has been evaluated.

Semantic backtracking is a clean and simple system for controlling of backtracking, since its
use 1s only a syntactic shorthand: all uses of ¢ can be replaced by rules using only the — via
a static algorithm. SEQUEL code using semantic backtracking is usually shorter and clearer
than the equivalent SEQUEL code without backtracking. For instance, say we wanted to try a
heuristic method of solving a problem, but revert to a brute force method if the heuristics failed.

The backtracking code for doing this (taken from [Tar93b]) is

(define solve-problem
problem? <- (solve-by-heuristics problem?)

problem? -> (solve-by-brute-force problem?))

The equivalent code without backtracking is

(define solve-problem
problem?
(equal (solve-by-heuristics problem?)
(eval *failure-object*))
-> (solve-by-heuristics problem?)

problem? -> (solve-by-brute-force problem?))
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2.2 Sequent Calculus Extensions to SEQUEL

2.2.1 Sequent Calculus

Sequent calculus! is a system for reasoning with sequents, where a sequent is an expression of
the form T' - A (with T and A both being lists of propositions), which can be read as ‘If all
propositions in I are true then at least one proposition in A s true’. The F symbol is called
a turnstile and can be read as ‘implies’ although its technical meaning is that what follows it
can be deduced from what precedes 1t. The T is called the antecedent, and the A is called the
consequent. The empty sequent ( F ) signifies a true (but trivial) theorem.

A proof in a sequent calculus is an object of the form:

E b

A
Production of a proof that a sequent T' = A is a theorem may be performed by forward or
backward chaining, i.e. one may start with only the trivial theorem ( F ) and a set of rules,
and work down (forward chaining), eventually producing T F A, or start with T' - A and work
upward (backward chaining).
The general schema for a sequent calculus rule is:

(Gn,...G”,F] f—Dn,...D]j,A])---(Gm,...th,Fh F Dh,1;~~~Dh,l;Ah,)
Gm,...Gom,Fol‘Dm,...Don,Ag ’

where the G5y and the Dy, are all propositions and the I'; and A, are sets of propositions.
Backward chaining can be thought of as using such a rule thus: the sequent below the line
can be discharged (proved to be a theorem) if the sequent(s) above the line can be discharged.
A sequent has been discharged when a rule with only the empty sequent above the line has been
applied.
A specific example of a sequent calculus rule is the ‘or-left rule’ for propositional calculus:

t,TFA 15, TFA
(t1 \/tg),FI—A

So, suppose we have a sequent =B, (A V B) F A, then instantiating ¢y as A, t; as B, I as (—B)
and A as (A), we have the following:

A,-B+A B,-~BFA
(AVB),-BF A

Meaning that we can prove that (AV B),—~B F A is a theorem providing we can prove that
both A,=BF A and B,—B I A are theorems.
Extra conditions on the application of sequent calculus rules can also be specified — these

are called side-conditions; for example:

fla),TEA
Jz.f(2),TFA

where a does not appear in I or A.

!Referring to general sequentzen systems (see [Di190]), not simply the sequent calculus implementation of First

Order Predicate Calculus.
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2.2.2 Use of Sequent Calculus in SEQUEL

Returning to the proof as type-checking principle underlying SEQUEL, a single notation is
required for describing proof procedures and type checking procedures. There are a number
of clearly described and easy to understand notations for specifying proof procedures, for ex-
ample the sequent calculus described above. Type-checking procedures are usually written in
languages developed for compiler-compilers (for example the Unix program YACC), and are
therefore neither easily expanded for other use nor generally well understood. So it would appear
to be much easier to develop a notation for specifying type-checking procedures by expanding a
notation for specifying proof procedures. The end result is that SEQUEL uses sequent calculus
notation for both purposes: the specification of types and the specification of theorem provers.

To improve the readability of SEQUEL’s sequent calculus, and to allow for more efficient
compilation to Lisp code, via Horn-clauses, SEQUEL uses single-conclusion sequent calculus,
so in the sequent T' = A A contains only a single proposition. This loss of generality does not
effect modeling nqthm. Production of a proof in SEQUEL is done by backward chaining, so
when using SEQUEL to produce proofs, a sequent is specified which is then manipulated via
the rules in the proof procedure to produce the empty sequent at the top of all branches.

The function theory is used to define both logical systems and types, with the keyword “:in-
teractive yes” for logics and (optionally) “interactive no” for types. Examples of interactive

theories for logics and non-interactive theories for types are given later.

2.2.3 The SEQUEL Type System

SEQUEL has a strong, static type system, XT'T, which contains type information for over 300
Common Lisp functions. Use of this type system is optional, and the type-checking is declarative
and fully transparent to the user through the type tracing mechanism. Type-checking within
SEQUEL is essentially the automatic production of a proof that an object inhabits a certain
type. There are two sorts of type within SEQUEL: primitive types and general types.

To define a primitive type, we define a unary predicate P. We can then define a primitive
type P:, by stating that z is of type P; iff (P ) is true. For instance the sub-type bignum of
integers (specified as all integers bigger than 100) can be defined as a primitive type by defining
a function bignumber thus:

(define bignumber
x (integerp x) -> (> x 100))

and then by declaring bignum to be a primitive type defined by the function bignumber:
(primitive bignum bignumber)

Whilst this is an easy exercise for simple types such as bignum, the amount of coding required for
more complex types would be significant. SEQUEL therefore allows the specification of types
by sequent calculus rules specified using non-interactive theory definitions. The specification in

sequent calculus of the type binary, implemented as a list of 1s and 0s, would be:

'+ X: Binary '+ X: Binary F
'k [1|1X]: Binary Tk [0|X]: Binary T+ []: Binary




7

The corresponding SEQUEL code would be:

(theory binary

<A> |- x * binary

iff

<A> |- [1 | x] * binary; rule 1
<A> |- x * binary

iff

<4> |- [0 | x] * binary; rule 2

thus

<4> |- [] * binary); rule 3

‘Thus’ indicates a possible route for proving the sequent below the line (in rule 3, since there
is no sequent above the line the ‘thus’ indicates successful discharge of a sequent) while the ‘iff’
(in rules 1 and 2) indicates that the only possible way of proving the sequent below the line is by
proving the sequent(s) above the line. The type-checker will work through an input [0 1 1 0] in
the following way:

[0110]* binary
iff; rule 2

[1 10]* binary
iff; rule 1

[1 0] * binary
iff; rule 1

[0] * binary

iff; rule 2

[] * binary
thus; rule 3
QED.

This automatic proof production is performed by the SEQUEL type-checker for direct inputs
such as [0 1 1 0] * binary, and for functions such as binor:
(define binor

{binary binary -> binary}

0oo->10a

[1 1 x]1 [_1yl->1I1] (binor x y)]

[_ 1 x]1[11]yl->1[1] (binor x y)J

LI x1 [_1]yl->T[0] (binor x y)I1)
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2.2.4 Sequent Calculus Specification of Theorem Provers

SEQUEL was developed in order to allow the high-level specification of theorem proving systems.
Theorem provers are used to reason about knowledge encoded in alogic. A structure for describing

a logic is therefore required. This structure is comprised of:
A Syntax: The form of a proposition.
A Semantics: The meaning of a proposition.
A Proof Procedure: A specification of how to construct a proof of a theorem.
A Set of Pragmatics: A description of how to use the proof procedure in an efficient manner.

The semantics of a logic depends on the user assigning meaning to the propositions being reasoned
about, and thus SEQUEL is not concerned with the semantics of a logic. The other parts of
a logic — the syntax, proof procedure and pragmatics — form the representation of a logic in
SEQUEL— called a logical framework.

To represent a logic in SEQUEL’s sequent calculus, we first define some types: wff, type and
t-expr. WIf is short for well-formed formula. A type is exactly what is suggested by its name
— the name of a type or a formula describing a type. T-expr is short for typed expression —
a list of three elements, (wff? * type?) where wff? is of type wff and type? is of type type. In
SEQUEL’s sequent calculus, a t-expr is a proposition, so in the sequent I' F A, " is a list of
t-exprs and A is a single t-expr.

A sequent in a logical framework is a list with three elements: a list of t-ezprs (the antecedent
or hypotheses), a turnstile (represented in ascii text as |—), followed by another t-expr (the
consequent or goal). So, if we have the sequent

Mwr * t1]...[wn *t,]] ¢ [wy *24]],
this is to be read as ‘assuming that wy is of type t1 and ...and that wy, is of type t,, show
that wgy s of type t,’, showing again the logics-as-types principle. For simple logics the types
g, 11 ...1, might all be just the same symbol, thm for example. For more complex logics such
as a constructive type theory, the types would have a more complex syntax and manipulation of
the types in the t-ezprs could form as much or more of the proof procedure as manipulation of
the wffs.

The types proof-object and proof are also defined. An object of type proof is a representation
of what remains to be proved before the original goal has been proved to be a theorem. An
object of type proof-object is merely a list of sequents. To be of type proof, an object must be of
type proof-object, and have been returned by a function with the result type proof. The system
functions for submitting a theorem to a logical framework produce the initial object of type proof,
and type-checked tactics? preserve this through the succeeding proof attempt.

So, we have an internal representation of an ongoing proof, namely a list of sequents to be

discharged. Next, a means of discharging these sequents is required. Two basic operations are

2Functions which encode the pragmatics of producing a proof in the logic, which have been type-checked to

have result type proof.
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available for the manipulation of sequents: logical rewrite rules and refinement rules. A logical
rewrite operates on a t-expr, replacing one proposition within the current sequent with another.

Refinement works on the current sequent, replacing it with zero or more new sequents.

Logical rewrite rules are defined using the function defrew and are of type
(t-expr — t-expr) or (t-expr o — t-expr).
where the extra argument (a) of the second form is to allow the passing of extra information,
used to improve control over the use of the rule. They are defined using the same priority-rewrite
language as ordinary SEQUEL functions. Thus a simple example of a logical rewrite rule for a
propositional logic framework would be to rewrite the t-expr
((a & b): thm)to (((a = b) & (b = a)) : thm).
This would be:
(defrew d-imp
{t-expr -> t-expr}
[[x <=> y] * thm] -> [[[x => y] & [y => x]] * thm])
Logical rewrites defined thus are called with the function rewrite. This has the type
(integer (t-expr — t-expr) proof — proof *
where the integer indicates which t-ezpr® in the top sequent is to be rewritten, the (t-erpr —
t-expr) is the name of the logical rewrite to be applied and proofis the current proof-object. If a
logical rewrite rule is applied to a t-expr which is not of the correct form (i.e. none of the rules
defining the logical rewrite fire) then the call of rewrite merely acts as the identity function. This
allows speculative application of logical rewrite rules. Thus if the head of proof? is the sequent
F (A < B):thm then applying (rewrite 0 d-imp proof?) returns proof? with the head sequent
F ((A = B) A (B = A)):thm, but if the head of proof? is the sequent F (A = B):thm then

calling (rewrite 0 d-imp proof?) will return proof? unchanged.

Refinements are defined using the interactive theory type. Basically a refinement is a sequent
calculus rule. TIn addition to the straightforward coding of sequent calculus rules, additional
capabilities for naming refinement rules, specifying parameters for use in refinement rules, and

placing side-conditions on the use of refinement rules are included.

Thus, to encode the sequent calculus rule

f(a),TFA
Jz.f(z), TFA

where a does not appear in I' or A,

as a named refinement function erxists, the following SEQUEL code could be used in an inter-

active theory definition:

Sor (integer a (t-expr o — t-expr) proof — proof) where the appropriate rewrite requires an extra argument

40 indicates the goal t-expr and the assumptions are numbered from the head of the list — if the integer is

greater than the number of assumptions then rewrite will act as the identity function.
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:name exists
:parameter (a? term)
:side-condition (free-in a? <A> delta?)
(£? a?) * thm, <A> |- delta? * thm
thus
((some x) (£f? x)) * thm, <A> |- delta? * thm
Unnamed refinement rules are called by the function refine with type

(symbol integer proof — proof);
where the symbol is the name of the interactive theory, the integer is the rule within that theory
to be applied, and the proof is the current proof-object. As with logical rewrites, refinements
act as an identity function if given unusable input. The type of the parameter a? is defined
to be term by the :parameter (a? term) line in the theory, where the definition of the type
term will have been included as part of the definition of the syntax of the framework. On calling
(exists term? proof?), where term? is an expression of type term and proof? is of type proof, an
attempt would be made to unify (((some z) (f¢ z)) * thm) with each hypothesis in the current
(head) sequent of proof?. If an attempt at unification succeeds, then the side-condition will be
checked. If the side condition evaluates to nil then the rest of the hypotheses will be likewise
tried. If the side-condition evaluates to ¢ then the rule will be applied. The order of hypotheses
in the current sequent can therefore effect the action of a refinement rule. The hypotheses in
the output sequent(s) will be in the order they appear in the sequent(s) before the thus. Thus
whichever hypothesis in the input sequent unifies with (((some z) (f¢ z) * thm) will be removed
from the list, and the rest of the list bound to <A>. the output sequent will have ((f? term?} *

thm) first, with <A> as the rest of the hypothesis list. The goal ¢-ezpr will remain unchanged.

Once the basic operations allowed in the logic are defined with theory and defrew, a framework
can be used as a tool for proving theorems. This is only the first step. If logical rewrites and
refinements were all that were available then proof within any system thus defined would be
painfully slow, and only really of use for demonstrating how to perform step-by-step proofs in
the logic. To define a useful PA or ATP, it is necessary to define the pragmatics of the logic:
a definition of which rules to apply in which order to successfully prove a theorem. Following
previous usage [PHHS87], Tarver has called such pragmatics tactics — basically a SEQUEL
function that has type

(o B ... proof = proof).
Tactics may be defined using define or deftactic, the latter indicating that the tactic is to be
made available to the user of the framework. During development of a system, hierarchies of
tactics will emerge, with the first tactics using only the logical rewrites and refinements, but with
subsequent generations of tactics calling those tactics already defined. Thus a pyramid structure
develops with the end result being either a fully automated theorem prover, or a proof assistant
with a small set of recommended operations available. Tt should be noted here that while a proof-
object may be decomposed to test how or whether to apply logical operations, re-construction of

a proof-object as the result of a rewrite rule in a tactic definition may invalidate the tactic. (An
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exact description of how this may be allowed is given in [Tar93b], but is beyond the scope of this

document.)

2.2.5 Proving Theorems

Once all the parts of a framework have been loaded into a SEQUEL session, the proof tool is
invoked. The proof tool is the SEQUEL theorem proving environment. In complete installations
an X-windows based GUI is available to aid use, but operation is basically the same with or
without the GUI. After issuing the command (prooftool), the user is requested to enter a sequence
of t-exzprs (the hypotheses), terminated by typing ok, followed by a final t-ezpr (the goal). Thus
to give a framework for propositional calculus the sequent

(= (A A B):thm + ((= A) V (= B))):thm,

the following extract from a SEQUEL session would be appropriate:?

(15+) (prooftool)

SEQUEL Proof Tool

ASSUMPTIONS: -

1> ((- (A & B)) * thm)
2> ok

CONCLUSION: -

7- (((" 4) vV (7 B)) * thm)

The resulting output would then be:

Step 1 [1]

?- (((" a) v (* b)) * thm)

1. ((* (a & b)) * thm)

FRAMEWORK>>

To the prompt of FRAMEWORK>> ¢ the user would input, via the screen or via the GUI

as appropriate, the tactics or logical rewrite rules they wished to invoke. A sample session for a

5The (15+) is the SEQUEL prompt. The 15 indicates that this is the sixteenth command given during the

session, while the + indicates that type-checking of the top-level is switched on.
8The actual prompt will be whatever the framework was named by the programmer, such as INDUCT>> or

TABII>>.
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proof within a propositional calculus framework is in Appendix C, together with the equivalent
sequent calculus.
In addition to the tactics programmed into the framework, there are a number of system

options available. These are:
Abort: Drop out of the proof tool and return ‘no’ to indicate that the proof has failed.
Back n: Backtrack n steps in the proof.

Lemma: When given a t-expr I, lemma obeys the following sequent rule:

ARl LAFT
AFT

Read: Brings up a pop-up window to allow direct input to the forming tactic command (when

using the GUT).

Rotate n m: Switch the nth and mth sequents in the current proof.
Swap n m: Exchange the nth and mth assumptions in the current sequent.
Thin n: Delete the nth assumption from the current sequent.

Undo: Re-input a command from scratch ignoring the current partial input (when using the

GUT).

Xtt: Invokes Xtt on the current sequent, solving it if any of the assumptions will unify with the

goal.

2.2.6 Derived Rules

Once a theorem has been proved, SEQUEL provides a mechanism for adding an appropriate
tactic to the framework to avoid having to go through the same stages again. The following
example is taken from [Tar93b].

Say we have proved that p, ¢ F (p A ¢). If, immediately after having proved this, we issue

the command (mk-dr and-intro nil) then and-intro will be the rule:

}_
P, 1, A (pAg)

If we issue the command (mk-dr and-intro t) then and-intro will be the rule:

AFp Altgq
Ak (pAg)
The latter is the rule we wish to create here, where each of the assumptions from the proof
becomes a new subgoal.
When producing such derived rules, SEQUEL generalises all expressions other than those
declared to be constants (here the symbol for ”logical and” would have been declared as a

constant).
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Chapter 3

An Overview of nqthm

In 1979, the book A Computational Logic ([BM79]) was published, describing a theory for proving
properties of pure Lisp programs (i.e. Lisp programs not involving assignment statements or
destructive functions) by induction. Since then, much further work has been done on this topic by
Boyer and Moore and others. There are now a number of theorem provers based on this theory,
including nqthm, which is the current implementation by Boyer and Moore. INDUCT was

based mainly on the theory set out in [BM79], with some extensions from [Ste88] and elsewhere.

This chapter will present an overview of the theory from [BM79].

3.1 Syntax and System Functions

Due to 1ts basis as a system for proving properties of Lisp programs, nqthm has an unusual
syntax for a theorem prover. The theorems that are proved are simply Lisp terms that have
been evaluated as always equal to true, whatever the value of any variables they might contain.
Expressions are all function calls or abbreviations for commonly used expressions, using Lisp’s
Prefix notation. So, 0 is an abbreviation for the constant (zero), I is an abbreviation for the
expression (addl (zero)), tis an abbreviation of (true), etc. Other examples of expressions are
(plus x 3), (cons z nil) and (or z (and (equal 1 y) t)).

We start with a system in which the only objects defined are the boolean values ¢ and f, and
the only functions are equal and if:

t ife=y y ifz=t

(equal z y) = ) (ifzyz) = .
f ife#y z fz=f

Next, the logical connectives and, or, not and tmplies are all defined in terms of if. For
example, oris defined as: (or zy) =(ifz t y).
We also need objects other than ¢ and fto work with. We define the shell representing natural

numbers in this way:
e The bottom object 1s 0. This is stated to be a number.

e Add1 1s the function used to construct new instances of numbers, and is called a constructor

function. Thus (add! z)is a number for all values of z. If z is not a number, z is treated
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as 0, so for example (add! t) is evaluated to 1.

e Numberp is a recogniser for integers, returning ¢ for objects which are numbers and f for

objects which are not numbers.

e Subl is the inverse operation of add?, and is hence called the destructor function for num-

bers. If a non-number or 0 is passed to sub? the result is the default value of 0.

o (Count is defined as:

(count z) = (if (numberp z) z 0)

e Lessp is defined as:

(lessp z y) = (if (equal y 0) f (if (equal z 0) t (lessp (subl z) (subl y))))

e A number of axioms are also added to the system. Rather than list them here, these axioms

will be stated when their use is explored.

A theorem stating that Va: N(z+1) > z is input as a top-level theorem (or lemma) to be proved:
(implies (numberp z) (lessp z (addl z))),
with the assumed meaning
(implies (numberp z) (lessp z (addl z))) = t.

The internal representation of the current conjecture is a disjunction of literals — called, as usual,
a clause. The conjecture (if a b ¢) is represented internally as the two clauses {(not a), b} and {q,
c}, both of which must be proved true for the original if-expression to be proved true. A clause
has been proved when any of the literals in it are reduced to t. A literal that has been reduced
to fis removed from the clause. If any of the clauses produced in trying to prove a conjecture
are reduced to the empty clause, then the proof attempt has failed. (Failure of a proof attempt
does not mean that the conjecture is false, since we may have performed an over-generalisation
during the proof attempt.) An embedded if-expression within a literal will be distributed out,
until the literal can be split. Thus, if we are trying to prove (foo (if z y z)), this is equivalent
to trying to prove (if z (foo y) (foo z)). So, instead of the clause {(foo (if z y z))}, we will have
the two clauses {(not z), (foo y)} and {z, (foo z)}. Similarly to nqthm and [BM79], in this
chapter a statement of the current conjecture to be proved will be in the form (implies (not p) q)
instead of the clause {p, q}, to improve readability. An explanation of why this internal notation
is desirable can be found on [BM79, pp88-89].

Rewriting of an expression is done using an appropriate system axiom. Such axioms are of the
form ezpr or (equal expry exprs). These axioms may involve variables (any symbol not defined
as a constant), in which case the axiom will apply if the expression being rewritten pattern
matches with the axiom. Axioms of the form ezpr will be used to rewrite an expression to ¢,
while axioms of the form (equal expry expr,) will be used to rewrite an expression matching
expr; to a dereferenced version of expr,. Once theorems (also called lemmas) have been proved
they may also be used as rules for rewriting expression. Axioms or theorems such as the example
above ((implies (numberp z) (lessp = (addl z)))) which are of the form (implies hyps thm) are

used in a slightly different way, as will be explained later.
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At this point it is useful to define the terms explicit value and explicit value template, which
will be used in a number of places further on. All bottom objects are explicit values, as are ¢
and f. Explicit values can also be formed using constructor functions applied to explicit values,
provided the arguments of the constructor function satisfy the shell restrictions. So, ¢ and (add1
0) are explicit values, but (add! t) is not since add! has a shell restriction of numberp which ¢
does not satisfy. An explicit value template is a non-variable expression formed using only shell

constructor functions, bottom objects and variables. Thus (add! z)is an explicit value template.

3.1.1 Function Definition

There are two sorts of function that can be defined — abbreviations such as
(square z) = (times z z)
and recursively defined functions (referred to from this point on as recursive functions).

Any function defined must conform to the definition principle, which requires explanation of
some terminology before being stated.

An important definition is that of a well-founded relation: a boolean-valued binary function,
say <, with domain S x S, where S = {s1,s5,...}, where < is a well-founded relation provided
there is no infinite sequence:

...8; < Sj < Sg.

Boyer and Moore do not prove that a particular function is a well-founded relation, but state
that lessp i1s such a relation for numbers. The need for well-founded relations will become clear
in the section about induction (§3.3.4).

A term is fn-free if fn does not occur as a function symbol anywhere in it. A term e governs
an occurrence of a term s in a term b if sis a sub-term of p in a sub-term (if e p ¢} of b, or if s
is a sub-term of ¢ in a sub-term (if (not e¢) p q) of b.

The Definition Principle:!

Given a function definition of the form: (fn 21 ...2,) = body, we require:
e fn to be a new function symbol of n arguments.

® 1 ...x, to be distinct variables.

e body to contain no variables other than =y ...z,.

e that if body includes any calls of fn, then there exists a well-founded relation
r and a measure function m of n arguments, such that for each occurrence of a
sub-term of body of the form (fn y1 ...yn), governed by the fn-free terms gq

.. .gn, 1t is a theorem that:

(implies (and g1 ...gn) (r (my1 ...Yn) (M 21 ... 20)))

The first three are of course simple to check, as is the fourth for abbreviations such as square
above. The only involved part is the final restriction. The reason for this restriction is to enable

the automatic production of valid inductions.

! Taken from [BM79, pages 44,45]
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Induction in this system is of a generalised form developed from structural induction. To
illustrate this, we first define the function plus over the natural numbers
(plus © y) = (if (serop ) (fix y) (add! (plus (subl 3) y)))
where fiz is defined as
(fix x) = (if (numberp z) z 0)

and zerop is defined as

(zerop x) = (or (equal z 0) (not (numberp z)))

Since the only recursive call in the definition of plus is (plus (subl z) y), which is governed by
the expression (not (zerop z)), the definition principle requires that we have a measure function
m and a well-founded relation r such that

(implies (not (zerop z)) (v (m (subl z) y) (m z y))).
So, given that it has been stated that lessp is a well-founded relation, if we define m as:
(m z y) = (count z)

then we have to prove

(implies (and (not (equal z 0)) (numberp z)) (lessp (count (subl z)) (count z)))
This is one of the axioms introduced by the definition of numbers, and is called an induction
lemma. For each new shell, induction lemmas of the form:

(implies (and (not (equal z btm)) (of-type-p z)) (lessp (count (d; z)) (count z)))
will be introduced, where btm is the bottom object of the shell (0 for numbers), of-type-p is
the shell identifier (numberp for numbers) and the d; are the destructor function(s) (sub! for

numbers).

The principle of structural induction states that, if we are trying to prove a conjecture (P
z) (where P is a higher-order template representing any conjecture involving z and may involve

other variables) we can prove (P z) provided we can prove:

(and (implies (B z) (P z))
(implies (and (not (B z)) (P (d z)))
(Pz))

where B is a higher-order template, and we have proved that

(implies (not (B z)) (v (m (d z)) (m z)))

where ris a well-founded relation and m and d are unary functions.

The definition of plus will be accepted by nqthm and the following induction will be stored

as sound for use with conjectures involving calls of plus:

(and (implies (equal z 0) (P z))
(implies (and (not (equal z 0)) (P (subl z))) (P z))).
Thus if we are trying to prove the conjecture

(implies (not (zerop y)) (lessp x (plus z y)))

then we can prove this by proving the conjecture
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(and (implies (equal z 0) (implies (not (zerop y)) (lessp z (plus z y)}))
(implies (and (not (equal z 0))
(implies (not (zerop y)) (lessp (subl z) (plus (subl z) y))))
(implies (not (zerop y)) (lessp = (plus x y))))).

This only shows the case for induction over single variables, which may be easily generalised to
account for more variables. A proof that such inductions are sound (subject to certain conditions)

can be found on [BMT79, pp.188-189].

3.2 An Example Proof

So, we have the above definition of plus accepted by nqthm. To illustrate the workings of nqthm
a proof of the commutativity of plus as defined above will be shown, followed by a more detailed
examination of the separate parts of the proof procedure, using examples from this proof and
others. In nqthm, commutativity of plus is stated as

(equal (plus a b) (plus b a)).

The first part of the proof procedure to be usefully applied to this conjecture is induction.
There are two valid induction schemes suggested by the terms in this lemma, one by (plus a b)
the other by (plus b a). These schemes are instantiations of the schemes above with z replaced
by a or b. The schemes are otherwise identical, and there are no reasonable criteria for choosing
between them other than randomly. (In fact, they are equally valid, the only difference being the
order they occur in the expression.) So, we choose the induction scheme which inducts upon b.

Thus, in order to prove our lemma, we need only prove the two sub-goals

Sub-Goal 1:

(implies (zerop b) (equal (plus a b) (plus b a}))
and

Sub-Goal 2:

(implies (and (not (zerop b)) (equal (plus a (subl b)) (plus (subl b) a)))
(equal (plus a b) (plus b a))))

(The original conjecture has been replaced by a new one which is the conjunction of these two
sub-goals — the sub-goals are the base and induction cases of an induction argument using the
structural induction suggested by the definition of plus.)

Concentrating first on sub-goal 1: rewriting (zerop b) to its definition above, and unfolding

(plus b a) (and the resulting occurrence of (fiz a) in the unfolded expression) we get
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(implies (or (equal b 0) (not (numberp b)))
(equal (plus a b)
(if (or (numberp b) (equal b 0))
(if (numberp a) a 0)
(addl (plus (subl b) a))))).

The (or (equal b 0) (not (numberp b))} expression in the conclusion of the implication is rewritten

to ¢ since it is the hypothesis, giving us
(implies (or (equal b 0) (not (numberp b)))
(equal (plus a b) (if (numberp a) a 0))).

As described above, the internal representation of this conjecture will be as a set of clauses. The
distribution of the if-expression together with manipulation of the conjecture as a set of clauses

gives the following four new conjectures:

Sub-Goal 1.1:

(implies (and (not (numberp b)) (numberp a))
(equal (plus a b) a))

Sub-Goal 1.2:

(implies (and (not (numberp b)) (not (numberp a)))
(equal (plus a b) 0))

Sub-Goal 1.3:

(implies (and (equal b 0) (numberp a))
(equal (plus a b) a))

and
Sub-Goal 1.4:

(implies (and (equal b 0) (not (numberp a}))
(equal (plus a b) 0))

Sub-goal 1.2 can be simplified to £, as can sub-goal 1.4, merely by unfolding the occurrences of plus
and simplifying the expressions. Sub-goals 1.1 and 1.3 are more interesting. So, concentrating
on sub-goal 1.1 first, the starting point is another induction, this time inducting on a, giving us

(after simplification) the two conjectures

Sub-Goal 1.1.1:

(implies (and (zerop a) (not (numberp b)) (numberp a))
(equal (plus a b) a))



-19-

and

Sub-Goal 1.1.2:

(implies (and (not (zerop a)) (not (numberp b)) (numberp a)
(equal (plus (subl a) b) (subl a)))
(equal (plus a b) a))

Looking at sub-goal 1.1.1, we can see that (and (zerop a} (numberp a)) reduces to (equal a 0),
and making use of this to rewrite all occurrences of a in the conclusion of the conjecture to 0, we

get

(implies (and (not (numberp b)) (equal a 0)) (equal (plus 0 b) 0)))
which, by unfolding (plus 0 b) and then the resulting occurrence of (fiz b), reduces to t. We now

turn to sub-goal 1.1.2, which gives, after unfolding (zerop a) and (plus a b)

(implies (and (numberp a) (not (equal a 0))
(not (numberp b)) (equal (plus (subl a) b} (subl a}))
(equal (add! (plus (subl a} b)) a}).
Given the hypothesis (equal (plus (subl a) b) (subl a}) and the term (plus (subl a) b) in the
conclusion of the conjecture, we replace (plus (subl a) b)) with (sub! a)in the conclusion, and

discard the assumption, giving the conjecture

(implies (and (numberp a) (not (equal a 0)) (not (numberp b)))
(equal (addl (subl a)) a)).
Another of the lemmas added when numbers were defined is
(implies (and (numberp z) (not (equal z 0))) (equal (addl (subl z)) z)).
So, given that (numberp a) and (not (equal a 0)) are hypotheses of the conjecture, we can rewrite
(add1 (subl a))in the conclusion to a, hence the above conjecture reduces to t. We have therefore

proved sub-goals 1.1 and 1.2, and hence have solved sub-goal 1. So, we turn to

Sub-Goal 2:

(implies (and (not (zerop b)) (equal (plus a (subl b)) (plus (subl b} a)))
(equal (plus a b) (plus b a))))

Which is simplified (unfolding calls of zerop and plus) to

(implies (and (not (equal b 0)) (numberp b))
(equal (plus a b) (addl (plus a (subl b))))}).
(Notice the use of the inductive hypothesis (equal (plus a (subl b)) (plus (subl b) a)) to replace
(plus a (subl b)) by (plus a (subl b) a) in the conclusion. The equality is then removed from the
list of assumptions, for reasons explained in §3.3.8.)
We now have an expression involving a destructor function (sub!). When numbers were

defined a lemma
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(implies (and (numberp z) (not (equal z 0))) (equal (addl (subl z)) z))
was added, as has been already stated. As well as using this to rewrite (addi (subl z)) to z
provided the assumptions are valid, this can be used to replace occurrences of the destructor
function sub! with the constructor function add!. If we have a conjecture (P z) which involves a

call of (subl z), we can prove (P z)if we can prove

(and (implies (zerop z) (P z))
(implies (and (not (zerop z)) (numberp z) (equal z (addl z))) (P z))).

This is called the elimination of destructor functions and §3.3.6 will show why this is desirable
and valid. We apply this to sub-goal 2 to replace occurrences of (subl b) with ¢ and occurrences
of b with (add1 ¢). Since sub-goal 2 includes (numberp b) and (not (equal b 0)) in the assumption
of the implication, the (implies (zerop x) (P z)) part of the substitution immediately reduces to

t, and we are left with (after some simplification)

(implies (and (numberp (addl c)) (not (equal (addl c¢) 0)))
(equal (add1 (plus a c))

(plus a (addl c))}).

We now come across two more of the lemmas added with the definition of a new shell, that

(not (equal (const x1...x,) btm)) and (of-type-p (const x)).
In the case of numbers this means that
(not (equal (addl z)) 0) and (numberp (addl z))

are added, so here the assumptions (not (equal (addi ¢) 0)) and (numberp (addl c)) are reduced

to ¢t and discarded, leaving

(equal (addl (plus ¢ a)) (plus (addl c) a)).

We perform an induction on ¢, with the induction scheme derived from the definition of plus,

giving the two new conjectures

Sub-Goal 2.1:
(implies (zerop c) (equal (addl (plus ¢ a)) (plus (addl c) a)))

and

Sub-Goal 2.2:

(implies (and (numberp c) (not (zerop a))
(equal (add! (plus (subl a) c}) (plus (subl a) (addl c))}))
(equal (addl (plus a c)) (plus a (addl ¢c)))).

Since the assumption (zerop z) means that (plus z y) unfolds to (fiz y), and (zerop (add! z))

evaluates to f, opening up both calls of plus in sub-goal 2.1 leaves us with the conjecture
(implies (zerop ¢) (equal (add! (fix a)) (addl (plus (subl (addl c)) a)))).

(subl (addl c)) reduces to 0 under both assumptions (not (numberp c)) and (equal ¢ 0) from the

hypothesis, so opening up the second call of plus, we get
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(equal (addl (fix a)) (addl (fix a))),

which obviously reduces to t.

Opening up both calls of plus in the conclusion of sub-goal 2.2 and simplifying we get

(implies (and (numberp c) (not (zerop b))
(equal (addl (plus (subl a) c)) (plus (subl a) (addl c))))
(equal (addl (addl (plus (subl a) c)))

(addl (plus (subl a) (addl c)))))

Using the equality hypothesis to replace (add! (plus (subl a) c)) in the conclusion with (plus
(subl a) (addl c)) gives

(implies . ..
(equal (add! (plus (subl a)} (addl c}))
(add1 (plus (subl a) (addl c))))).

which obviously reduces immediately to ¢, finishing the proof of the last remaining sub-goal and

therefore proving the original conjecture.

3.3 The Proof Procedure in Depth

The various phases of the proof procedure demonstrated above (induction, simplification, unfold-
ing, elimination and generalisation) are applied in what Boyer and Moore refer to as a waterfall
model. When a conjecture is presented for proof, it is passed through simplification to a fixpoint,
followed by unfolding. If the unfolding heuristic makes changes to the conjecture then it is re-
turned to the ‘top of the waterfall’ again, otherwise it is passed to the induction phase (if the
conjecture is proved at any point it passes out of the waterfall, of course). Once a conjecture
has been through an induction, the elimination and generalisation (including cross-fertilisation)
phases are added to the waterfall so that the order becomes ‘simplification, unfolding, elimination,
generalisation, induction’. If a conjecture is passed to the induction phase and no appropriate

inductions are found then the proof attempt has failed.

3.3.1 Types of Goal

Above we have the proof of the lemma (equal (plus z y) (plus y z)). To prove this lemma the
command
(prove-lemma com-plus (rewrite) (equal (plus z y) (plus y z}))
was issued. Prove-lemma is, obviously, the function used to prove a lemma, com-plus is the
name you wish to give to the lemma and (rewrite) is a list of the ways the lemma is to be used.
During proof, nqthm provides a running commentary on what it is doing. This commentary
was not included above, but as an example, the lemma
(implies (and (numberp z) (not (equal z 0})) (equal (addl (subl z)) z))

is added by the definition of numbers with the name sub1l-elim, so when it is used by nqthm

to eliminate (sub! a) in the above proof nqthm printed
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This simplifies, opening up zerop and plus, to the new conjecture:

(implies (and (not (equal a 0))
(numberp a)
(equal (plus (subl a) b)
(plus b (subl a))))
(equal (addi (plus b (subl a)))
(plus b a))).

Applying the lemma subl-elim, replace a by (addl c) to eliminate
(subl a). We employ the shell restriction lemma noted when subil
was introduced to restrict the new variable. This produces the

new conjecture:

(implies (and (numberp c)
(not (equal (addl c¢) 0))
(equal (plus c b) (plus b c)))
(equal (addi (plus b c))
(plus b (addl ¢)))),

The (rewrite) argument is a list of symbols indicating how the lemma should be used if it is

proved . In this case the lemma is to be used only as a rewrite rule. The forms of lemma are

Rewrite: A rewrite rule has the form expr, (equal expr, expr,), (implies hyps expr) or (implies
hyps (equal expry expry)). In the case where there is a set of hypotheses, the lemma will
be implemented as a conditional rewrite rule (so that the rewrite will only be applied if
the hypotheses can be proved first). Where the actual rewrite is of the form (equal expr,
expry ) then this will be implemented as rewriting any expression which pattern-matches
with expr; to the dereferenced expr,. Where the rewrite is of the form ezpr then any

expression which pattern-matches with ezpr will be rewritten to t.

Induction: Induction lemmas are of the form
(implies hyps (r (m zy...2,) (My1...Yn)))
where
e ris a well-founded relation
® Y1 ...y, are all distinct variables.

These lemmas are used by nqthm to help prove that a recursive function definition satisfies

the definition principle.

Elimination: Elimination lemmas are of the form

(implies hyps (equal lhs z))

where
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e zis a varlable

e there is at least one proper sub-term (d vi...v,) of lhs with vy ...v, all distinct

variables and the only variables appearing within the elimination lemma

e zonly appears in lhs within such (d vy ...v,) sub-terms.

Generalisation: On occasion, the current conjecture may be easier to solve by replacing a term
that appears more than once by a variable. The new conjecture is a more general version
of the original, but may be no longer true. One reason it may no longer be true is that
some specific property of the term being generalised has been lost in the generalisation, for
instance generalising the term (sort z) to y will often invalidate a conjecture, but including
the assumption (ordered y) will usually prevent this. To avoid useful properties of the term
generalised being lost, generalisation lemmas encode properties in such a way that they
may be re-introduced as extra hypotheses after generalisation. A generalisation lemma will
be of the form (P (fn sy ...s, )) where P is a schema, not simply a function. If we generalise
a term

(fnsi...sp)in (R (fnsy...s,))
to the new variable z, then we add the assumption (P (fn z}), so that we instead try to

prove

(implies (P (fn z)) (R z)).

3.3.2 Rewriting

Most system axioms, as well as proved lemmas, are used as rewrite rules in addition to their use
in other ways, although occasionally a lemma written with a specific syntax in order to be useful
as an induction, generalisation or elimination lemma is not in a form that is useful as a rewrite
rule, so an equivalent lemma may be proved separately to encode the information as a useful

rewrite rule. For instance the expressions

(implies (not (zerop x)) (lessp (count (subl z)) (count z}))
and (implies (not (zerop x)) (lessp (subl z) z))
are equivalent since for numbers (count z) = z. The first is useful as an induction lemma, but the
second is more useful as a rewrite rule. As mentioned above, there are four formats for a lemma

to be used as a rewrite rule:
o expr
o (equal expr, expr,)
o (implies hyps expr)
o (implies hyps (equal expr, expr,)).

In effect, there are two sorts of rule — one in which an expression can be rewritten to ¢, and
another which contains two expression which can be rewritten to each other. Either sort of rule
can include restrictions on when it is applicable (i.e. a set of hypotheses (hyps) may have to be

proved before it can be used).
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3.3.2.1 Use of Rewrite Rules

If a rewrite rule is of the form expr, then the only decision to be made is whether or not to
rewrite an instance (expr’) of it to ¢. Since the aim in proving lemmas is to reduce the conjecture
expression to t, and since t will always be a simpler expression than expr’, the rule will always
be used.

If the rule is of the form (equal expr; exprs,), then there are a number of options as to its
use. It may be allowed to only rewrite instances of it to ¢, or it could be used as an equivalence
rule for instances of its sub-expressions expr; and expr, allowing either or both of the rules
expr, — expr, and expr, — expr, to be used. The use of the rule to rewrite instances of (equal
expr, expry) to tis subsumed by using only one of the other rules, since the rule rewriting (equal
z z) to t will then be applicable. nqthm allows the user control of how the rule is used by only
using expr, — expry. It is therefore up to the user to state the rules in the most useful form, so
for instance the lemma stating the non-utility of more than one application of a sorting function
should be proved as

(equal (sort (sort z)) (sort z)) not as (equal (sort z) (sort (sort z))).

If we have a literal (not [) in a clause, this will be used to rewrite sub-expressions [ of other
literals to t, while a literal [ is used to rewrite [ to f. If we have a literal (not (equal l1 l5)), this
may be used to rewrite a sub-expression l1 to ls or l5 to ly.

With rules such as (equal (plus a b) (plus b a)), there is of course the danger of continually
rewriting a conjecture and never reaching a fixpoint, but cycling through two or more versions of
the rule. So, say we are trying to prove (foo (plus z (add! y))), having proved the commutativity

of plus already. We can perform the rewrite on this in an infinite loop

(foo (plus z (addl y))) — (foo (plus (addl y) z))
— (foo (plus z (addl y)))
— (foo (plus (addl y) z))

To avoid this loop, nqthm uses a lexical measure to determine whether a symmetric rule such
as the commutativity of plus should be used. Thus (plus z (add! y)) will be rewritten to (plus
(add1 y) z), but the reverse operation rewriting (plus (add! y) z) back to (plus z (addl y)) will
not occur, since the string ” (plus(addly)x)” is lexically less than the string “(plusx(addly))”.
Finally, all function definitions which are merely abbreviations are also used as unconditional
rewrite rules. Thus, whenever the term (square z) is encountered, it will be rewritten to (times

3.3.2.2 Conditional Rewrite Rules

Many axioms and lemmas are of the form (implies hyps rule), for instance subl-elim is
(implies (not (zerop z)) (equal (addl (subl z)) z)).
Use of these rules is more complicated than use of the equivalent lemmas without conditions, for

instance the lemma com-plus (equal (plus a b) (plus b a)).
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We can of course use these rules in a backwards chaining method so that if we are trying to
prove expr’, an instance of expr, and we have a lemma (implies hyps expr), then we can merely
replace the conjecture expr’ with the new conjecture hyps’ (the appropriate instance of hyps).
However, this can quite easily lead to infinite backchaining, even through the use of only one

lemma, as shown by Boyer and Moore’s example:

If we have proved that (implies (lessp z (1- y)) (lessp z y}), and have (lessp = y)

as the current conjecture then we might perform the infinite loop:

(lessp x y) — (lessp z (1- y))
— (lessp z (1- (1- y)))
— (lessp x (1- (1- (1- y))}))

To fully explain the usage of conditional rewrite lemmas we must return to the clausal rep-
resentation used by nqthm internally. Suppose we are trying to prove (implies hyp g), where
both hyp and g are single logical terms (i.e. they are not a sequence of terms joined with and or
or). Suppose we have already proved the lemmas (implies h g) and (implies j h) where h and j
are single terms. The clausal representation of (implies hyp g) will be {(not hyp), g}. Thus to
prove (implies hyp g) it is enough to prove (implies hyp h), the clause {(not hyp), h}. This is the
first attempt to use a conditional rewrite rule, so we start from scratch with a list containing the
single literal, the negation of h, and go on to rewrite the clause {(not hyp), h}. Unconditional
rewrites are used if appropriate, but in this case we assume we come to the lemma (implies j
h) without changing the clause. So, we now decide that we can prove (implies hyp h) if we can
prove (implies hyp j), i.e. we move from a clause {(not hyp), h} to a clause {(not hyp), j}. Before
doing this, we need to check that we are not in danger of looping. We have a list with (not h) on
it. If jis on the list, we can assume jis true, and the clause has been proved. If (not j) is on the
list, then we have already tried to prove j, and returned to it, so we are looping. We also decide
we are looping and give up trying to use the the conditional lemmas if jis an elaboration of the
atom of one of terms on the list. (The atom of a term (not p) is p, otherwise the atom of a term

qis ¢.) Ais an elaboration of B if:

e A is identical to B or

e the complexity of A is greater than or equal to the complexity of B and A is worse than B.
A is worse than Bif

e A is a variable that is a proper sub-term of B or

e neither A nor B is a variable and either

— A and B have different top-level function symbols, with a sub-term C of A being worse

than or identical to B or

— A and B have the same top-level function symbol, with some argument of A being

worse than the corresponding argument of B, no argument of B being a variable or
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explicit value without the corresponding argument of A also being a variable or explicit

value, with no argument of A being worse than the corresponding argument of B.

There 1s one more problem with conditional rewrite rules — there are useful rules that have
variables in the hypotheses which do not appear in the rule, for instance the transitivity of lessp:
(implies (and (lessp z y) (lessp y z)) (lessp z z)),
where y only appears in the hypotheses. For rules such as this a fairly weak heuristic is used to

decide how to apply them. Say we have the literals (P z y t) and (R z y), and have proved

(implies (and (P z y z) (Sz)}) (Rzy))

then we will bind z to ¢, having already established (P z y t), we then try to establish (S t).
Thus a free variable in a hypothesis of a conditional rewrite rule will be bound only to a term
which will allow immediate satisfaction of one of the hypotheses in which it occurs. So if we
had also had the literal (S u) in the conjecture, we would have then tried to establish (P z y
u) to allow the use of the rewrite (R z y) — t. The weakness of this heuristic is that nqthm
will not find a binding for the free variable that might be obvious to a human, but that does not
meet the exact criterion above. The benefit of this heuristic over, say, attempting all possible
bindings for the free variable to expressions appearing in the current conjecture, is the gain in
speed. If all possible bindings were attempted each time rewriting occurred, for all conditional
rewrites with free variables, then nqthm would lose a lot of time trying inappropriate bindings.
The weakness of this heuristic will usually not prevent nqthm proving a lemma, but it will be a
longer, more involved process (using further inductions etc.) than the more ‘direct’ approach of

using a previously proved lemma with free variables.

3.3.3 Typing

Since nqthm uses a syntax and parser based on Lisp, expressions such as (add! t}, which would be
ill-formed in a strongly typed language, are perfectly admissible. However, type information can
be very useful in proving theorems about Lisp functions in this context, and we have already seen
that Boyer and Moore introduced type specifiers and type restrictions into the shell definition.
This type information is also used implicitly during the rewriting procedures. So far, we have
introduced the system axioms and added the shell of natural numbers only.

We define the type f to be the set {f}, the type t to be the set {t}, the type numberp to be
the set of all objects for which the function numberp returns ¢, and the type others to be the
set containing all objects not in these other sets. A type set is a set of one or more types, for
example {t, f}, which is the type set usually referred to as boolean — for an expression to have
this type set means that the expression should only evaluate to t or f, whatever the value of any
variables in the expression. For example the expression (numberp z) has type set {t, f}. The
type set universe is the set of all types, at this point universe = {t, f, numberp, others}.

Calculating the minimal type set for an expression is not possible in general (such an algorithm
would be equivalent to a sound and complete proof procedure), so the type set computation
returns a superset of the minimal type set.

The use of type sets is to reduce the search space for nqthm. For instance, the expression
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(numberp (fn z)) can sometimes be reduced to ¢ or fdepending on whether the type set of (fn z)
contains only numberp or does not contain numberp.

Whenever a new function is defined, its type set is calculated and a lemma added to the
system specifying this — for instance the function plus always returns a number (this is why
the base case of the recursion returns (fiz y) instead of just y), so when plus is accepted as a
recursive function the lemma (numberp (plus z y)) is added. These lemmas are used as rewrite
and generalisation lemmas. For a fuller treatment of this topic, including a description of the

type set computation algorithm, see [BM79, Ch. VT].

3.3.4 Induction

The ability to handle proof by induction is the core of Boyer and Moore’s system — all the other
parts of the proof procedure are merely there to support this method of proof. Almost all proofs
in nqthm rely at some point on an induction, if only in that a lemma used in the proof was
proved by induction. To explain the system of induction in nqthm we must first return to the

definition principle.

3.3.4.1 The Definition Principle

Recall that to accept a recursive function its definition must satisfy some fairly trivial (to demon-
strate) syntactical considerations, and also the restriction that for a definition of fn:
(fnzy ... z,) = body,

we must show that:

if body includes any calls of fn, then there exists a well-founded relation r and
a measure function m of n arguments, such that for each occurrence of a sub-term
of body of the form (fn y1 ...yn), governed by the fn-free terms g1 ...gn, it is a
theorem that (implies (and g1 ...gn) (r (Mmy1 ... yn) (M1 ... 2))).

To prove this, the first requirement is to calculate the machine of the new recursive function:
for a new recursive function fn, a list of the recursive calls present in the body of the function,
together with a list of the fn-free terms governing each call. Say we have the function ack defined

as Peter’s version of Ackerman’s function:

(ack z y) = (if (zerop z) (addl y)
(if (zerop y) (ack (subl z) 1)
(ack (subl z) (ack z (subl y))))).

This has machine

Hypotheses Recursive Arguments
(not (zerop z)) (subl z), 1
(zerop y)

(not (zerop x)) | (subl z), (ack x (subl y))
(not (zerop y)) z, (subl y)
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As has been mentioned above, nqthm satisfies the definition principle condition by using
previously proved induction lemmas. induction lemmas are of the form

(implies hyps (r (m z1...2,) (Mmy1...yn)}))

where
e ris a well-founded relation
® yi ...y, are all distinct variables.

Note that for a lemma to be useful as an induction lemma it must have the same measure
function m in both arguments of the measure function r. The only well-founded relation present
in the initial configuration of nqthm is lessp. A lemma of the form (implies h (lessp a b)), where
a1s a functional expression returning a number can be used as an induction lemma by translating
it into the form (implies h (lessp (count a) (count b))).

In the following discussion reference is repeatedly made to the component parts of induction
lemmas. To facilitate this, we define the parts of an induction lemma

(implies hyps (r (m x1 ...xn) (Mmy1 ... Yn)))

as follows
hyps 1s the induction hypothesis,
r is the relation,
m is the measure,
z1 ...z, are the r-arguments,
Y1 ...Yn are the y-arguments and
(r(ma ...xn) (my1 ...ys)))1s the induction conclusion.

If we have a new function definition with arity n, nqthm forms all the (non-empty) subsets of the
arguments. So, for ack above we have the sets of arguments:

(o}, Ly} and {z, 9}
Each set is then tested with all the induction lemmas whose measure has the same number of
arguments as there are members of the set (in the initial configuration of nqthm we have only
one lemma which has a unary measure (count)). This testing follows the following procedure:

Say we have the new unary recursive function fn which has machine:

Hypotheses Recursive Argument

(not (B z)), (not (B (bar z))) (foo (bar x)

and that we have two induction lemmas:

1. (implies (not (B y)) (v (m (foo y)) (m y))) and
2. (implies (not (B z)) (r (m (bar z)) (m z))).

We have a single recursive argument and two induction lemmas with unary measure functions.

We examine our recursive argument and try and pattern match it with the z-argument in an

induction lemma. Thus we try and pattern match (foo (bar z)) with (foo y) and (bar z), which
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gives us a match only for lemma 1 above (with substitution [(bar x)/y]). We therefore have
the relation (r (m (foo (bar z))) (m (bar z))) provided we can prove that the terms governing
the recursive call entail the dereferenced terms in the hypothesis of induction lemma 1. We
do not test this yet since we have further to go. The dereferenced y-argument of lemma 1 is
now (bar z), which is not the formal argument (recall that we are trying to prove that there
is a relation/measure pair for which the recursive argument is less than the formal argument).
We therefore try and pattern match the (bar z) expression with the z-argument in an induction
lemma, this time finding that we can match it with induction lemma 2 (with substitution [x/z]).
This gives us the relation (7 (m (bar z))} (m z)), where the y-argument of the dereferenced lemma
is now equal to the formal argument z. So, we have a chain of relations linking the recursive
argument (foo (bar z)) to the formal argument z. We now test each link in the chain to see if it
holds, by checking that the governing terms from the machine entail the dereferenced hypotheses

in the lemmas. Here this means that we must check the two conjectures

(implies (and (not (B z)) (not (B (bar z)))) (not (B (bar z)))) and
(implies (and (not (B z)) (not (B (bar z))}) (not (B z))).
In this case these conjectures are trivial to prove (sometimes more complicated theorem proving

is required to show that the relation holds but often it will be of this trivial form). Since we have

established the two relations (r (m (foo (bar z))) (m (bar z))) and (r (m (bar z}) (m z)) we can
state that the relation (r (m (foo (bar z))) (m z)) holds provided r is transitive. In the usual
case, r will be lessp, which is transitive, and Boyer and Moore state on [BM79, p.182] that from
any well-founded relation we can construct a transitive version by taking its transitive closure.
The conditions on this relation are (not (B z)) and (not (B (bar z))) (in this case there are no
governing terms in the machine that are not required — in general this may not be the case).
Here we have only used two links in a transitive chain. In general we may use more than this.
The measure function m and well-founded relation r» must be the same at every stage so that we
can state by transitivity that
(r (m (R 2)) (m 2))

where (R z) is the template for the recursive argument. All possible sequences that can be found
in the above manner are tried. The restriction that the y-arguments of an induction lemma must
all be variables prevents an infinite chain being formed — at least one of the z-arguments will be

reduced to a structurally simpler form at each step of the chain.

In addition to lemmas (and transitive chains of lemmas) which imply that the measure of
the z-argument is ‘strictly less than’ the measure of the y-argument, we may also have induction
lemmas that imply a ‘less than or equal to’ relation between the measured arguments. Such
lemmas typically include a hypothesis

(not (equal (m zy ...2,) (Mmy1 ... Yn))).
We may form such lemmas from each induction lemma which implies a strictly less than rela-
tionship by adding the extra hypothesis required, for example the ‘strictly less than’ induction

lemma

(implies (not (bar x)) (v (m (foo z)) (m z)))
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may form the basis of a ‘less than or equal to’ induction lemma
(implies (and (not (equal (m (foo z)) (m z))) (not (bar z))) (r (m (foo z)) (m z))).
When we have an induction lemma whose z-arguments match the subset of the arguments of

the recursive call, but the checking of the hypotheses fails we form such a subsidiary lemma and

check that.

At the end of this process, we will have a list of lists of induction lemmas (or transitive
chains of lemmas) for each (non-empty) sub-set of the arguments, and for each recursive call.
Each list will either imply a ‘strictly less than’ relationship or a ‘less than or equal to’ rela-
tionship between the arguments of the recursive calls and the formal arguments of the func-
tion. First we analyse these lists to see if we can form a direct measure function that gives a
‘strictly less than’ measure on all the recursive calls for some subset of the arguments. Any
relation/measure/set of arguments which can be found to work for all recursive calls is stored

on its own and not used for the next stage, which is to attempt to produce a lezicographic

relation — an ordering based on that used to order words in a dictionary (hence the name).
If we have a measure m; and a relation r; for which some subset z; ...z of the formal ar-
guments has the property that on at least one recursive call (say with arguments a1 ...a)
(ri (miar ...a;) (my z1 ...21))
and on others (say with arguments by ...b;) we have
(my by ... b)) = (m1 oz ..oz))
and we have another relation rs and measure ms, for some subset y1 ...yr of the formal ar-

guments, such that for each of the recursive calls for which the relation/measure pair r1/m is
merely non-increasing, we have

(ra (ma by ... bg) (m2 oy ... yg)),

then we can form the well-founded (lexicographic) relation on the pair

<(m1 Z1 ... Zl_),(mg Yy .- yk_)>
the measured subset of the arguments of such a relation being the union of the sets {z1 ...z}
and {y1 ...yx}. This strategy can of course be extended so that r or s may themselves have

been formed as lexicographic measures, say < r3,74 >. Thus r3 need only be decreasing/non-
increasing on those calls not dealt with by the 7 relation, while 4 needs only be decreasing on

those calls not dealt with by either ry or r3.

Finally, we can now look at our example ack. We have only the induction lemma provided
by the definition of natural numbers, which is unary, so we try this function on each recursive
call and for each of the two arguments z and y. Laying the results out in a table following the

recursive calls of the machine above we get:

For z | For y Recursive Arguments
< — (subl z), 1

- (subl z), (ack z (subl y))

X, (subl y)

IN A
A
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Thus if we form the lexicographic measure formed from lessp and lessp? and use the measure
count on z for all the recursive calls, and on y for the last call only, we have the measured subset
{z, y} which can be used to satisfy the definition principle for ack. The highly complex nature of

3

the analysis going on is to ensure that all possible relation/measure® combinations for all possible

measured subsets are found. The reasons for doing this are discussed in the next section.

3.3.4.2 Production of Induction Schemes

We have, therefore, a set of hypotheses which justify a measure/relation pair for which a meas-
ured subset of the arguments decrease on each call, justifying the recursive function definition

under the definition principle. In the case of ack we therefore have an amended machine

Hypotheses Recursive Arguments
(not (zerop z)) (subl z), 1
(not (zerop z)) | (subl z), (ack z (subl y))
(not (zerop y)) z, (subl y)

with the measured subset {z, y}. (Note that there are two sets of recursive arguments both of
which are governed by the same hypotheses.) The hypotheses in this table are the ones from
the induction lemmaf(s) used to show that the measure decreases according to a relation. This
is to prevent hypotheses which are required for the function to operate properly clogging up the
induction scheme where they are not really needed. In this case, for instance the hypothesis (zerop
y) governs the first recursive call in the machine, but is discarded for the induction scheme, since
it is not required for the satisfaction of the definition principle. This cleaning up by discarding
unneeded assumptions avoids problems later on when we try to form a new induction scheme
which replaces two of those suggested by different recursive functions in a conjecture. Since (zerop
y) is not a required hypothesis, and may interfere with this process, we discard it. (See page 34
for the details.)

From this amended machine, we can produce the base (or degenerate) case of the induction
as well. To do this we take each separate set of hypotheses and take their conjunction, then
negate that conjunction, and finally take the disjunction of these negated conjunctions. After
some manipulation via the rules governing the propositional logical connectives, we are left with
a single expression. If this expression is a disjunction, it is equivalent to a separate base case for
each digjoint term. For ack, we initially get the expression

(or (not (not (zerop z))) (not (and (not (zerop z))) (not (zerop y)))))).
The (not (not (zerop x))) term is rewritten to (zerop z) immediately, and application of De
Morgan’s rules then produce
(or (zerop z) (zerop x) (zerop y)),

which of course allows one of the (zerop z) terms to be discarded.

2The more usual terminology is that the lexicographic relation is induced by lessp and lessp, but the term
induced is too close to induction so is not used to avoid confusion.

3For those relations and measures used in induction lemmas previously proved.
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So, we have a measure of some subset of the formal arguments that reduces (according to a
particular well-founded relation) on each recursive call, and from this we will produce an induc-

tion scheme:

(and (implies (or (zerop z) (zerop y)) (P z y))
(implies (and (not (zerop z)) (P (subl z) 1}) (P z y))
(implies (and (not (zerop z)) (not (zerop y))
(P (subl z)} (ack z (subl y))) (P z (subl y)))
(P )

This form of induction is the core procedure involved in nqthm. A proof that such inductions
are sound (under certain instantiation criteria demonstrated below), can be found on [BMT79,
pp-188—189]. For the remainder of the chapter, induction schemes will be specified in sequent
calculus form, to increase clarity. The induction scheme above is:
i, (or (zerop z) (zerop y)) F (P z y)}
T, (not (zerop z)), (P (subl z) 1) (P z y)
T, (not (zerop z)), (not (zerop y)), (P (subl z) (ack = (subl y))), (P = (subl y)) - (P z y)

'k (Pxy).

P x can be any expression containing the sub-expression (plus z y),* where z is a variable
Y Yy exp g p p Y/
bold variables in the consequent of the sequent below the line indicate the measured variables®
q q
— these must be variables for the scheme to be applied to a particular expression). In the se-
quents above the line:
(P x y)[A/z, B/y] if y is a variable,

(P A B)=
(P x y)[A/z] if y is not a variable.

The bracketed sequent above the line is the base case. In the rest of this chapter the base case
sequent will be omitted since it can be deduced from the induction cases and it does not effect

the heuristics being discussed.

3.3.4.3 Production of Appropriate Induction Schemes

Before performing an induction, we have to decide on the form of that induction. Production of
valid induction schemes is fairly simple, the complexity coming from the need for useful induction
schemes — ones which are likely to prove the conjecture. Our example proof of the commutativity
of plus contained a number of inductions, none of them involving the more complicated selection
heuristics. We will therefore concentrate on different conjectures to illustrate these heuristics.
Firstly consider
(implies (and (lessp d e} (lessp e f)) (lessp d f))
The recursive function calls present in this conjecture are:
(lessp d e), (lessp e f) and (lessp d f).

The definition of lessp suggests two induction schemes

4This is a heuristic restriction to increase the chances of proving the conjecture.

5See definition on next page.
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T, (not (zerop z)), (P (subl z) (subl y)) F (P z y)
I'F(Pxy).

T, (not (zerop y)), (P (subl x) (subl y)) F (P z y)
'F(Pzy).

The induction schemes suggested by the recursive terms in the conjecture are therefore
1 T, (not (zerop d)), (P (subl d) (subl e))F (P d e)
Tk (Pde).
2 T, (not (zerop €)), (P (subl d) (subl e)) - (P de)
F(Pde)
3 T, (not (zerop e)), ( (subl e) (subl f))F (Pe f)
F(P e f).
4 T, (not (zerop f)), ( (subt e) (subl f))F (Pef)
E (P
5 T, (not (zerop d)), (P (subl d) (subl f))F (P d f)
'E(Pdy
6 T, (not (zerop f)), (P (subl d) (subl f))F (P d f)
T'H(Pdf).

At this stage, we need to define a number of terms pertaining to induction schemes. The
variables present in a conjecture are separated into the changing variables and the unchanging
variables — a variable is a member of the changing variables if any of the inductive hypotheses
include a non-identity substitution. An unchanging variable is one which has an identity substitu-
tion in all the inductive hypotheses. Sometimes the distinction will be made between a measured
changing variable and an unmeasured changing variable — depending on whether a changing
variable is member of the measured subset justifying the scheme or not. Thus in scheme 1 above,
d and e are changing variables and there are no unchanging variables. Were we to actually use
scheme 1, fn would not be substituted for in the scheme, but that is because it does not appear in
the expressions suggesting the induction, rather than appearing as a variable which the scheme
indicates it 1s useful to leave unchanged.

Suppose we were to choose one of these schemes at random (there seem to be few other criteria
for choosing one), say 3. Ignoring all but the most critical parts of the induction process, this
gives us an inductive hypothesis involving the terms

(lessp d (subl e)), (lessp (subl €) (subl f)) and (lessp d (subl f)),

and a conclusions involving the terms

(lessp d e), (lessp e f) and (lessp d f).

Unfolding the terms in the conclusion gives us a conclusion involving

(lessp (subl d) (subl e)), (lessp (subl e) (subl f)) and (lessp (subl d) (subl f)).
The term (lessp (subl e) (subl f)) appears in both the conclusion and the inductive hypothesis,
but the terms (lessp (subl d) (subl e)) and (lessp (subl d) (subl f))do not, nor do the expressions
before unfolding appear either. The key step in a proof by induction is the use of the inductive

hypothesis to prove the conclusion, so we therefore aim to have an induction scheme which gives
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us a conjecture of the form:
(implies (P (dy z1) ... (dy x,)) (R (P21 ... 2,)))
where we can unfold (P 2y ... z,)to (P (dy z1) ... (d, ,))), Leaving us with only (R t) to
prove. This is termed having a reflection of the hypothesis in the conclusion. (A whole philosophy
of proof planning for proof by induction has been built up on this idea following [Aub79].)
We therefore wish to somehow create an induction which involves
(lessp (subl d) (subl e)), (lessp (subl e} (subl f)) and (lessp (subl d) (subl f))

in the inductive hypothesis. We can do this by merging the schemes shown above. We can
merge induction scheme S into scheme P, where the inductive hypotheses for the cases are the

substitutions: sf::fnr;i (#i1) and pgzzll’:"%t (yj1), 1 being the variable substituted for, if:

e the changing variables of P and the changing variables of S have a non-empty intersection,
e the unchanging variables of P have an empty intersection with the changing variables of S,
e the unchanging variables of S have an empty intersection with the changing variables of P,

e we can merge the sets of substitutions such that

(vk 33 3 (55 = p5) A (rie = i) A (Vh VLYG Yk (2 = yin) = (sF = p1)))

where the same value of j or [ cannot be used for more than one value of & or .

The induction scheme resulting from such a merging operation includes the hypotheses and
substitutions from each case. The changing and unchanging variables for the new scheme are the
unions of the appropriate sets of variables from the original schemes. Identical schemes will of
course merge without change. We see here the reasoning behind keeping the set of hypotheses
governing each substitution as small as possible. Once two schemes are merged, a hypothesis
which was appropriate for a scheme suggested by one recursive function call may be an undesirable
property of the term it operates on in terms of the recursive function suggesting the other merged
scheme.

If different substitutions for the same variable occur in a case in both schemes, there are three
possibilities: the variable is in the measured subset for both schemes, in which case the cases
cannot be merged; the variable is in the measured subset for only one of the schemes, in which
case the cases may be merged and the substitution for a measured variable will be used for the
new scheme; or the variable may not be in the measured subset for either of the two schemes, in
which case a random choice is made as to which substitution is used for the new scheme.

In our example, the two schemes 1 and 5 will merge to form the new scheme

T, (not (zerop d)), (P (subl d) (subl e) (subl f))F (P de f)
'E(Pdef).

If we start with n induction schemes, each scheme is checked with the other (n - 1} schemes
for possible mergers. Any scheme which will merge with any of the others is discarded after all
possible merged schemes have been calculated. The schemes which could not merge with any
others and the new schemes produced from mergers are then passed through this procedure again

— we proceed until we reach a fixpoint set of induction schemes. In our example, this results in
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the single scheme
T, (not (zerop d)), (not (zerop e)), F(Pdef)
(not (zerop f)), (P (subl d) (subl €) (subl f)) '

I't+(Pdef).

Boyer and Moore comment that when using nqthm to slowly develop a theoretical background
for proving a theorem (such as proving the lemmas needed for proving the uniqueness of prime
factors in number theory), the possible induction schemes will often merge into only one scheme
(or into a set of schemes from which their most powerful selection heuristic will choose only one
as being highly suitable).

Next we turn to the conjecture

(implies (not (zerop a)) (lessp (half a) a)),
where half is defined as
(half z) = (if (zerop z) O (if (zerop (subl z)) 0 (addl (half (subl (subl z)))))
This definition is allowed under the definition principle by using the transitivity of lessp and
proving that (sub!l (subl z)) (< (subl z)) < z. (See [BM79, pp.181-182] for details.) The

induction scheme suggested by its definition is

T, (not (zerop z)), (not (zerop (subl z))), (P (subl (subl z)))t (P x)
'k (Px)

so the induction schemes suggested by recursive calls in the conjecture are

1 T, (not (zerop (half a))), (P (subl (half a)) (subl a)) + (P (half a))
I'F (P a (half a))

2 T, (not (zerop a)), (P (subl (half a)) (subl a))F (P (half a) a)
'k (P (half a) a)

3 T, (not (zerop a)), (not (zerop (subl a))), (P (subl (subl a))) F (P a)

'k (P a).

Schemes 1 and 2 are not completely valid, however, since they include substitutions for non-
variables. We may discard a substitution provided it is not one of the measured terms, so we
can discard the substitution of (subl (half a)) for (half a) in 2, but not in 1. Since 1 involves a
non-variable term in a measured position, the whole scheme must be discarded, leaving us with

scheme 3 unchanged and the new scheme 2

T, (not (zerop a)), (P (subl a))F (P a)

I'F (P a).

(We can discard the unmeasured substitution from the scheme and still maintain validity because
only the measured terms are required. The unmeasured term substitutions are merely present
to increase the reflection effect noted above as being desirable.) Examining the two schemes, we
can see that 3 appears to be a repeated form of the first, in that the substitution from 2, applied
twice, is equivalent to the substitution of 3, and the hypotheses of 3 are the hypothesis of 2 and

that hypothesis with the substitution from 2 applied:

(al(subl a)/a])[(subl a)/a] = (subl (subl a)) and
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(not (zerop a))[(subl a)/a] = (not (zerop (subl a))).

In cases such as this we say that the second scheme has subsumed the first (this is Boyer and
Moore’s terminology), and is therefore the only scheme we are left with. The term subsumed
can be slightly confusing, since the normal meaning of subsumption is that a more general term
(conjecture, clause etc.) subsumes a particular instance of it. Here, the more constrained, less
general term subsumes the more general term. From experience gained proving theorems by
induction, Boyer and Moore decided that better reflections were produced by using the scheme
involving the repeated scheme once rather than trying to use the non-repeated scheme.

Once we have gathered the induction schemes, decided which are valid, and performed all
the merging and subsumption that is possible, we may still be left with more than one induction
scheme. There are four heuristics remaining for choosing between these. Firstly we compare
the schemes, to see if they interfere with each other. Schemes with no overlap will probably be
applicable sequentially, so whichever is applied first, the other will be a candidate for further
inductions if necessary. Overlapping schemes, however, may have problems, so the flaw detection
heuristic is applied first (a scheme is flawed if its application would invalidate the application
of another candidate at a later point in the proof). Any unflawed scheme is preferable over a
flawed scheme. A scheme S is said to be flawed with respect to a scheme T'if a changing variable,
say v, of S is a changing or unchanging variable of 7. If v is a changing variable of 7' then S
must substitute differently for some common variable (not necessarily v), otherwise the schemes
S and T would have merged. To demonstrate why a changing variable in one scheme being an
unchanging variable in another causes problems, we turn to the proof that plus is associative for
an example. The conjecture stating the associativity of plus is

(equal (plus a (plus b c}) (plus (plus a b) c)).

After validation, merging and subsumption, we are left with the two schemes

1 T, (not (zerop a)), (P (subl a)bc)t (P abec)
'k (Pabec)
2 T, (not (zerop b)), (P (subl b) ¢)F (P b c)

I'F(Pbec).

Scheme 2 is flawed with respect to scheme 1 since the unchanging variable b in scheme 1 is a
changing variable in scheme 2. Say we were to use scheme 2, we would then have an inductive
hypothesis involving the terms (plus a (sub! b)) and (plus (subf b) ¢) and the terms (plus a b)
and (plus b ¢) in the conclusion. The term (plus b ¢) will unfold to a term (plus (subl b} c), as
we would wish for reflection. However, the term (plus a b) will always include b not (subf b), so
no matter how many times we unfold it we will never achieve a reflection of (plus a (subl b)).
On the other hand, if we were to use scheme 1, we would have no similar problem because a does
not appear in any term which unfolds to a recursive call mentioning a directly, terms involving a
unfold to terms involving the (subl a) that we require for reflection.

If we are still left with more than one unflawed candidate induction, or if all the candidate
inductions are flawed, we must choose between them. A score for each scheme is maintained from

the beginning of the process as follows. The initial score of a scheme is the ratio of the number
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of changing variables over the number of formal arguments. Thus for the scheme suggested by
1

a term (plus a b) in the conjecture is 5. If two schemes merge, then the resulting new scheme
has the score of both added together, and if scheme S subsumes scheme T the score for scheme
T is added to the score for S. The scheme with the highest score is chosen from the remaining
set of all flawed or all unflawed schemes. If two or more schemes share the highest score, then
the function which includes the most substitutions which are not primitive-recursive (unchanging
or substituted for by only shell destructor calls on itself — thus (subl! z)/z, (subl (subl z))/x
and z/z are all primitive-recursive substitutions, but (ack z (sub! y))/y is not). Finally, if we
still have more than one scheme to choose from then the choice is made randomly — usually

these schemes will be suggested by symmetric conjectures so there is little difference between the

schemes.

3.3.5 Unfolding

The next phase of the proof procedure we will explore is that of unfolding recursive function calls.
If this were done without control, it would lead to an infinite loop of unfolding an expression,
rewriting the resulting expression and then unfolding the recursive call(s) again .. ..

We therefore need a heuristic which prevents such infinite progression of unfolding, but allows
unfoldings which might be useful (since not unfolding a recursive function call at an appropriate
point can prevent a proof being found). There are two heuristics we use to decide whether or not
to unfold a particular recursive call.

The first of these is that under some circumstances we can predict that repeated unfolding
will result in an expression not involving any descendant calls of the function unfolded — a
descendant call is one which is introduced by the unfolding. Thus if we have the expression (plus
a (plus b ¢)) and unfold the outermost plus, we get

(if (zerop a) (plus b c) (addl (plus (subl a) (plus b c))))

which includes three occurrences of the function plus. Only the occurrence

(plus (subl a) (plus b c))
is a descendant call, however, since the other two calls (both of (plus b ¢)) are simply sub-terms of
an argument of the call unfolded. The indication we have that unfolding will eliminate descendant
calls is that a measured subset (as calculated when the function was defined and determined to
obey the definition principle) consists of only explicit values (as defined earlier in the chapter).

For example, if we have the expression (plus (add1 (add? 0)) a), then since {z} is a measured
subset of the formal arguments of plus, {z, y}, we can unfold this (three times), which gives us,
after rewriting, (add! (add! a)), which does not contain any descendant calls of plus.

This heuristic is only occasionally useful, however. We need a more powerful heuristic to
decide whether unfolding a particular call is useful. We do this by unfolding the expression,
and applying the simplification rules of rewriting to the expression, using the full power of the
rewriting algorithms (but only on this expression). The resulting expression (say wval), is then
compared with the original function call (say (fn s1 ... sn)) in order to decide which it is better

to keep.
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The first criterion is that if val contains no occurrences of fn, then we keep it, since we have
simplified away any mention of the recursive function fn. There is no way of telling if occurrences
of fn in wval are descendant calls or not, so this may occasionally fail when it should succeed, but
one of the further heuristics should capture this case and allow the unfolding.

Otherwise, suppose we have m occurrences of fn in val:

(fnsii... sn1) - (f0Smm ... Spom)

If each recursive call satisfies one of the following criteria then we allow the unfolding;:
e cach of the arguments s1 ;... s, ; already occurs in the current conjecture, or
e more of the s1;... s,; are explicit values than s1 ... sy, or

o the symbolic complexity of some measured subset of s; ;... s, ; is less than the symbolic
complexity of the same subset of s; ... s,. An adequate measure of the symbolic complexity
of an expression is the number of occurrences of function symbols, with the restriction that

the symbolic complexity of (if z y z) is the larger of the symbolic complexity of y and z.

3.3.6 Elimination of Destructor Functions

As was demonstrated in the proof of the commutativity of plus, nqthm uses a set of lemmas

(the elimination lemmas) to replace a conjecture in which a certain function symbol occurs with

a new conjecture (often exactly equivalent, sometimes more general) in which there are fewer

occurrences of that function symbol, but more of another. These lemmas are of the form:
(implies hyps (equal lhs z))

where
e zis a variable,

e there is at least one proper sub-term (d vi...v,) of lhs where vy ...v, are all distinct

variables and are the only variables which appear in the lemma,
e z only appears in lhs within such (d vy ...v, ) sub-terms.

The d functions are the destructor functions, and any function present in an elimination lemma as
one of these functions is marked as a destructor function (nqthm makes use of this information
as part of the generalisation heuristic — see §3.3.7). For each new shell defined, an elimination
lemma of the form
(implies (and (r z) (not (equal z btm))) (equal (const (dy z) ...(dn z)) z))
is added. So, as we have seen, the definition of natural numbers involved the addition of the
axiom subl-elim:
(implies (and (numberp z) (not (equal x 0))) (equal (addl (subl z)) z))

which is used to remove occurrences of a term (sub! y), where y is a variable, and replace it
in the current conjecture with the term z, where 2z is a new variable not already occurring in
the conjecture, so that where y occurred there is now an occurrence of (add! z). The syntactic

requirements above, and the way the lemmais used (see below) guarantee that the new conjecture
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is at least a generalisation of the previous conjecture so that (new-conjecture = old-conjecture).
A sub-class of elimination lemmas (which include the shell axiom elimination lemmas) has the
property that (new-conjecture < old-conjecture), meaning that the conjecture after elimination
is exactly equivalent to the original conjecture. [BM79, pp.139-141] shows the properties an
elimination lemma must have to be such a validity preserving lemma. Tt is left to the user to
decide whether to only prove validity preserving elimination lemmas, or to use more general
elimination lemmas. These more general lemmas can sometimes cause a proof to fail since the
new conjecture after elimination of a destructor might not be true, even though the original

lemma was true.

So, we have an elimination lemma

(implies hyps (equal lhs z))
containing the destructor term (d z). To use it we take the current conjecture, say P, and try to
prove the new conjectures

(implies (not hyps) P) and

(implies (and hyps (equal lhs z)) P)

the second of which is generalised by replacing all the appropriate destructor terms by new
variables (also adding in extra hypotheses as per the generalisation heuristics), and then using
the equality relation (equal lhs' z) (where lhs' is the generalised version of lhs) to replace all

occurrences of zin P.

For a concrete example we return to the proof that plus is commutative. Use of the lemma
subl-elim as an elimination lemma (using (zerop z) as shorthand for (or (not (numberp z))

(equal z 0))), we get the following:

(and (implies (zerop z) (P z))
(implies (and (not (zerop z))
(numberp c)

(equal z (addl c)))
(Px))).

At the point in the proof of com-plus that this is used we have the conjecture:

(implies (and (not (equal a 0)) (numberp a)
(equal (plus (subl a) b) (plus b (subl a))))
(equal (addl (plus b (subl a))) (plus b a))).

So, we have the two conjectures which are equivalent to the original:

(implies (and (zerop a) (not (equal a 0)) (numberp a)
(equal (plus (subl a) b) (plus b (subl a))))
(equal (addl (plus b (subl a))) (plus b a))).

and
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(implies (and (not (zerop a)) (numberp c) (equal a (addl c))
(not (equal a 0)) (numberp a)
(equal (plus (subl a) b)
(plus b (subl )
(equal (addl (plus b (subl a))) (plus b a))).

The first of these has the assumptions (zerop a), (not (equal a 0)) and (numberp a), which
together are incompatible, so this conjecture is automatically true. In the second, we use the
equality (equal a (addl ¢)) to replace every occurrence of a in the other hypotheses and the
conclusion with (add! ¢}, and then remove this assumption (see §3.3.8 for the general rules about

such operations) giving us:

(implies (and (not (zerop (addl c))) (numberp c)
(not (equal (addl ¢) 0)) (numberp (addl c))
(equal (plus (subl (addl c)) b)
(plus b (subl (addl c)))))
(equal (add1l (plus b (subl (addl c)))) (plus b (addl c)))).

The assumption (numberp (add! c))is of course immediately proved true by type set manipulation
(there is also a system axiom stating this), while the assumption (not (equal (addl c) 0)) is
immediately proved true by another system axiom; the assumption (not (zerop (addl c))}), being

merely a combination of these two lemmas is also discarded, leaving us with:

(implies (and (numberp c) (equal (plus ¢ b) (plus b c)))
(equal (add1 (plus b c)) (plus b (addl c))}))

If we look back to the original conjecture before the elimination lemma was used:

(implies (and (not (equal a 0)) (numberp a)
(equal (plus (subl a) b) (plus b (subl a))))
(equal (add1 (plus b (subl a))) (plus b a))).

we can see that effectively (subl a) has been replaced with ¢ and a has been replaced with
(add1 c), giving us the usual method of mathematical induction, assuming the conjecture for an
arbitrary value (c), and showing that the conjecture therefore holds for the successor value (add!
¢). The conjectures produced by elimination of destructor functions are frequently much easier
to prove than the original conjectures, especially if further inductions are required. Moreover, it
is fairly common that we are able to perform an elimination following induction. Since this is
the case, it might seem sensible to avoid the complex two tier process, and perform constructive
inductions instead, while still allowing elimination. However, not all ‘destructor’ functions have
an exact inverse constructor function — in fact any function which is a many-one mapping will

not have an appropriate inverse.

Finally, we must take care not to involve ourselves in an infinite loop by eliminating a de-

structor function, which is then re-introduced when we unfold a recursive function, which we
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proceed to eliminate again . ... For example if we have the expression (lessp (1- z) z), and elim-
inate (1- z) replacing it with y, we get (lessp y (1+ y)) which unfolds to (lessp (1- y) y), which
is equivalent to where we started. To avoid such loops elimination is never performed on a term
involving a variable introduced by a previous elimination, unless we have performed an induction

since the previous elimination.

3.3.7 Generalisation

The generalisation heuristic of nqthm is a very weak one, and except in very straightforward
cases, experienced nqthm users will stop the proof when a generalisation occurs in order to
analyse the current conjecture and formulate a more appropriate generalised conjecture than
nqthm is likely to find on its own, prove such a conjecture as a rewrite lemma, and finally re-run
the original proof (source [Moo93]).

There are two parts to the generalisation procedure — the identification of terms to generalise,
and the actual generalisation, the latter part taking into account previously proved generalisation
lemmas. The second part of this heuristic is also used in the elimination of destructor terms, at
the point where the destructor terms are generalised to new variables.

There has been much other work done on this subject, which is one of the most difficult but
interesting areas of research into proof by induction and [Vad93] presents a good overview of the
work. Here, we will concentrate only on the heuristic implemented in nqthm.

As an example, we will turn to part of the proof that plus (as already defined) is distributable
over times defined as

(times x y) = (if (zerop x) 0 (plus y (times (subl z) y)))
The complete proof of this is fairly long, so only the generalisation will be shown here. During

this proof we come to the conjecture

(implies (and (numberp z) (numberp u))
(equal (plus z (addl (plus u z})) (addl (plus z (plus u z))))).

A human looking at this would almost certainly see that this is simply a specific example of the
more general conjecture that the successor function (addf) applied to the second argument of
plus can be distributed outside the plus. The reason this is not immediately apparent to nqthm
is because of the way plus was defined — as recursing on the first argument.

This conjecture is generalised to

(implies (and (numberp w) (numberp z) (numberp u))
(equal (plus z (addl w)) (addl (plus z w)))).

3.3.7.1 Identification of Terms to Generalise

Again, this heuristic requires consideration of the internal representation of a conjecture in clausal

form, rather than as a single expression. An expression e is suitable for generalisation if

e it is not a variable, an explicit value or explicit value template,
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e its top-level function is not equal or a destructor® function and

e ¢ occurs in two or more literals within the clause, or e occurs within z and y in a literal of

the form (equal z y) or of the form (not (equal z y)).

So, in the above example, we have the clause
{(not (numberp z)), (not (number u)),
(equal (plus z (addl (plus u z))) (addl (plus z (plus u z))))}.
The only expression which fits the above criteria is (plus u z), which occurs in both arguments

of the equality literal.

3.3.7.2 Generalising Terms

Having identified the terms we wish to generalise (either via the above heuristic or using elim-
ination lemmas), we need to ensure that useful properties of the generalised terms are not lost.
In the example above, we are generalising an expression (plus u z) to the new variable w. When
plus was defined, its type set was computed to be {numberp}. Since this is a singleton type set
we add this type restriction as an extra assumption (numberp w). If the type set had included
more than one type, this restriction would not have been added — Boyer and Moore state that
adding such type restrictions produces more problems than it solves.

As well as such type restriction we may have proved a generalisation lemma highlighting a
property of an expression which may be important. Such generalisation lemmas will be of the
form (r (fn @1 ...xy,)), where ris a schema. If a term (fn s1 ...s, ) is identified as suitable for
generalisation, then (r (fn s1 ...sp) is added as an assumption, together with any appropriate
type lemmas. For instance, if we have defined the binary function remainder to return the
remainder of dividing the second argument by the first, then the following generalisation lemma
may be proved

(equal (lessp (remainder z y) y) (not (zerop y))).
If we generalise an expression (remainder a b) to z, we then add the assumption
(equal (lessp z b) (not (zerop b))).

This means that if, at a later stage in the proof, we need to prove that (lessp z b), we can prove it
indirectly provided we can show that (not (zerop b)), the latter being far easier than the former.
This is due to the fact that we know z was really a remainder term from a division by b, so z is
less than b provided b is a non-zero number. Since there is a useful elimination lemma replacing
remainder with plus and difference, the generalisation of remainder may occur quite often. Thus,
proving generalisation lemmas (such as the above one) for terms which may be eliminated as
destructors, is often useful.

Once this generalisation has been performed, we get the new conjecture in our ongoing ex-

ample

8Destructor functions include both those introduced by shell definitions and any function which is ‘eliminated’

by a previously proven elimination lemma.
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(implies (and (numberp w) (numberp z) (numberp u))
(equal (plus z (addl w)) (addl (plus z w)))).

The assumptions (numberp z) and (numberp u) are obviously now redundant, and can be dis-
carded. Tt is quite common for this to happen fairly regularly during a proof, particularly after
generalisation or elimination of destructor terms, but it is not always obvious whether or not an
assumption can be discarded, nor is the process risk-free. (Technically, the removal of a hypo-
thesis is another form of generalisation, and can cause the production of a non-valid conjecture
from an initially valid one.) Therefore there is a set of heuristics dealing with what assumptions

can be discarded and when it 1s useful to do so.

3.3.8 Discarding Irrelevant Hypotheses

There are two main sorts of assumption that we wish to eliminate — literals which are divorced
from the rest of the clause and some equality assumptions.
The first of these is the case we have above, in the example used to demonstrate generalisation.

We were left with the conjecture (in clausal form)

{(not (numberp w)), (not (numberp z)), (not (numberp u)),

(equal (plus z (addl w)) (addl (plus z w)))}.
The literals (not (numberp z)) and (not (numberp u)) are divorced from the rest of the conjecture

since both include only variables that only appear in that one literal. If they have not been proved
true by the simplification algorithms (rewriting and unfolding), then we assume they are untrue
or unprovable and discard them. While the conjecture that results is technically more general
than the original there is actually little risk of over-generalising the conjecture during this process.

The other is the case of an equality as one of the assumptions — i.e. the negation of an
equality as a literal in the clause. If we are trying to prove an equality relation, then an induction
will lead to an equality hypothesis, as in the case of the commutativity of plus, where following

an induction and simplification, we get the conjecture

(implies (and (not (equal a 0)) (numberp a)
(equal (plus (subl a) b) (plus b (subl a))))
(equal (addl (plus (subl a) b)) (plus b a))).

which in clausal form is

{(equal a 0), (not (equal (plus (subl a) b) (plus b (subl a)))),
(equal (add! (plus (subl a) b)) (plus b a)))}.

We could of course leave things as they are, which is not all that useful, or we could use the equality
hypothesis but keep the literal containing it. The reason we discard the equality hypothesis
after use 1s to ‘clean up’ the conjecture so that if a further induction is required, the equality
hypothesis does not cloud the issue of finding the correct induction scheme. Since choosing the
wrong induction scheme can cause a proof to fail, it is less risky to generalise the conjecture by
discarding an equality hypothesis after use than it is to keep a redundant literal. The name given

to this process by Boyer and Moore is called cross-fertilisation (see [BM79, Ch. XIJ). Suppose
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we have a conjecture (implies (equal s’ h') (equal s (fn h'))). We can legitimately substitute s’
for b’ or substitute A’ for s’ in all the other literals, but Boyer and Moore found that the most
useful heuristic was to substitute s’ for A’ in each of the other literals, except for equality literals,
where the substitution is made only in the second argument of the equality, so even if s contains
h' as a sub-term we would still end up with the new conjecture

(equal s (fn s')).
In our example from the commutativity of plus, therefore, we use the equality

(equal (plus (subl a) b) (plus b (subl a))))
to substitute (plus (subl a) b) for (plus b (subl a))in (equal (plus b a) (add! (plus (subl a)b)))).

3.4 Conclusion

The theory presented here comprises most of the work from [BM79]. Much further work has
been done in this area by Boyer and Moore and others (particularly by a group at Edinburgh
University working with the Oyster-Clam system based on the same theory, see [Ste88] and [BT89]
for example). There are a number of theorem provers based on the original theory presented here,
including nqthm-1992, the current release of Boyer and Moore’s implementation. These systems
tend to deal with an untyped object language. As well as allowing for the extension of the ideas
presented here into areas such as constructive type theory by integrating INDUCT with other
SEQUEL frameworks (such as that for Thompson’s TTO, see [Tho91]), an implementation of
the theory presented here as a SEQUEL framework could explore the advantages of inheriting
a strong type system, or even allow the verification or transformation of functions to become an
integrated part of such a type system. In the next chapter the groundwork for such a framework
is presented. Some of the heuristics detailed above are rationalised or reduced in scope, while
others are no longer required due to the type system the framework INDUCT inherits from
SEQUEL.
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Chapter 4

An Overview of INDUCT

This chapter deals with the framework developed in SEQUEL to perform proof by induction.
The theoretical basis for most of this, taken from [BM79], is described in the previous chapter.
Some refinements of the basic theory presented by Boyer and Moore have been included (most
notably Stevens’ rationalisation of the merging algorithm and flawing heuristics from [Ste88]),
and not all of the functionality of the system presented in [BM79] has been implemented due to
time constraints. The framework is called INDUCT, its most notable difference from nqthm

being the strong typing which it inherits from SEQUEL.

4.1 Using INDUCT

Unlike most frameworks, INDUCT 1is not accessed by explicitly calling the proof tool. Due
to its incremental nature', INDUCT is called by a function start-induct which calls the proof
tool and sets up an appropriate environment within it. This environment consists of a (mostly)
hypothesis-free sequent calculus system. To prove a theorem (which is held in the consequent of
the sequent), various tactics are invoked to reduce the expression to t. In general, there will only
be a single sequent in the current proof, although some of the interactive proof settings produce

extra sequents and/or antecedents.

4.1.1 Interactive Settings

SEQUEL frameworks are designed to be interactive. Although INDUCT is currently less
interactive than most SEQUEL frameworks, more interaction 1s possible than with nqthm.
The main use for interaction will probably come with generalisation, although interaction
with induction is also available. As stated in §3.3.7, the generalisation heuristic which nqthm
uses is not all that useful. Experienced users of nqthm will frequently break out of a proof when
a generalisation occurs, prove an appropriate lemma separately, and then start from scratch with
the original problem. Obviously this wastes a lot of time. With INDUCT, by setting the global

variable *generalisation-interactive* to t, the set of suggested generalisations is printed whenever

!Each lemma adds to the rule base in a way not provided for by SEQUEL?’s derived rule method (§2.2.6).
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a generalisation is possible and the user is given a number of choices.

1. Allow the proof to continue with all the suggested generalisations being performed.

2. Allow the proof to continue, but choose a (possibly empty) subset of the generalisations to

be performed.
3. Stop the proof at that point and enter the interactive proof process.

Having stopped the proof, the user can then prove an appropriate rewrite rule as a secondary
lemma and return to the original proof at the point it was stopped. This avoids the problem of
having to restart the original proof, which may have been substantially complete. The user may
also choose to concentrate proof effort on a sub-expression within the current conjecture by using
the abstract tactic.

A similar system exists for choice of induction schemes, provided *induction-interactive* is
set to t. INDUCT calculates the possible induction schemes as usual, but instead of applying
the selection heuristics, gives the user the choice of performing one of the induction schemes or
performing some other action before continuing with the proof. Appendix B contains a sample

INDUCT session showing the interactive settings.

4.1.2 Tactics

The on-line documentation for the tactics available within INDUCT is shown below:

proof-procedure:

This is the heart of the theorem prover, controlling simplification, unfolding of recursive func-
tions, generalisation, elimination of destructor terms and induction. The proof procedure is
automatically called by prove-lemma, but if proof of a lemma is paused during interaction,

calling this tactic resumes operation on the current goal lemma.

prove-lemma:

This tactic requires two arguments. First is a boolean valued expression which is the goal to
be proved true, and second is an indicator of the type of goal. Valid types are rewrite rules
(including conditional rewrites), induction lemmas, generalisation lemmas, elimination lemmas
and ‘none’. Elimination, induction and generalisation lemmas are all used as rewrite rules as
well as any other appropriate usage. Goals indicated as ‘none’ are merely passed through the

proof procedure.

abstract:

This tactic is used during interactive proof. It allows a boolean valued sub-expression of the
current, goal to be abstracted out and worked on with the proof procedure separately from the

rest of the goal.

abstraction-complete:

This tactic is used during interactive proof. It replaces the current goal within its parent

expression after an abstraction.
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abort-lemma:

Removes the current lemma from the stack.

environment:

Allows saving and restoration of the current environment of proven rules etc. Options are ‘save
filename comments’ or ‘restore filename nil’; where filename is a string and comments is a list
of strings which will be placed at the beginning of the environment file. The environment file

should not be manually edited.

induct-define:

Given the name of a type-checked SEQUEL function, this function will attempt to show that
the function is well-founded and if so will add it to the list of legally acceptable INDUCT

recursive functions.

print-functions:

Will print out a list of the legally acceptable INDUCT functions — ‘undefined’, recursive

and non-recursive, in that order.

4.1.2.1 Proof-procedure

This tactic will usually only be called by the user following interaction. It proceeds with the proof

tool in the normal way following, for example, an extra lemma proved in place of a generalisation.

4.1.2.2 Prove-lemma

This is the tactic which starts the ball rolling with the framework. It requires two arguments:
a conjecture to be proved, and a method of using that conjecture once it has been proved. As
described in §3.3.7, 3.3.4 and 3.3.6, generalisation, induction and elimination lemmas all have
specific forms and are used as rewrite rules in addition to their other functions. If the expression
is proved true, the lemma will be used appropriately. In addition, the lemma type ‘none’ can be

used to prove a theorem without adding it to the system.

4.1.2.3 Abstract and Abstraction-complete

It is sometimes helpful to be able to concentrate on one sub-expression instead of on the whole
goal. If the sub-expression can be evaluated to true then the user could use prove-lemma to
prove this and add the appropriate rewrite rule. However, if the user wishes to concentrate on
a sub-expression which is not inherently true, but which can be simplified, then they can use
the abstract tactic to work on a sub-expression with the proof-procedure, and then return the
resulting expression to its place in the parent expression using abstraction-complete.

The sub-expression to be abstracted should have a result type of bool. INDUCT will allow
expressions with a variable type (e.g. @) to be abstracted but will issue a warning.

The sub-expression is indicated by a list of numbers representing the argument position at
each level. Thus

(1) indicates (foo z) in (if (foo ) y z) and
(1 4 2) indicates (plus y z) in (if (bar t (plus 1 z) nil (plus 3 (plus y z))) nil t).
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If the abstracted sub-expression evaluates to t at any point, it will automatically be returned to
the parent-expression. Abstractions may be carried out recursively. Due to the mechanism of
abstraction and the multiple conjectures possible in the stack, the SEQUEL primitive function
rotate should not be used as this invalidates INDUCT — since INDUCT stores information
about the sequents in the stack in global variables containing a list of values (one for each sequent
on the stack), use of the SEQUEL primitive rotate which changes the order of the sequents on the
stack causes the information in the global variables to be incorrect. Tt is not possible to prevent
a user from using the SEQUEL primitive tactics, so there is a warning in the documentation

for users to avoid using certain of them.

4.1.2.4 Environment

Without a means of saving the set of lemmas proved in a session, INDUCT would not be very
useful, since each session would start from only the system axioms. The environment tactic allows
the user to save the current image and restore a previous one. the files produced for storing the
image should not be edited in any way. As well as the name of the file and a switch for save/restore,
the environment command accepts a list of strings which will be added as comments to a saved
image on the first few lines.

There 1s one piece of information that is not saved — the SEQUEL definitions of functions
accepted under the definition principle. These should be added to the file ‘induct.defs.rec’ in the
INDUCT framework directory, ensuring they are loaded into each session with the rest of the

framework.

4.1.2.5 Induct-define

Once a function definition has been entered into the SEQUEL top-level, it must be passed

through the definition principle in order to be accepted by INDUCT for use in theorems. Induct-

define performs this task when given the name of the SEQUEL function to be so analysed.
‘Undefined functions’ should be defined to the SEQUEL top-level using induct-defined-

undefined, and non-recursive definitions by using induct-define-nr.

4.1.2.6 Print-functions

A list is printed out of the functions ‘known’ to the system. Only functions that are listed
as recursive, non-recursive or undefined functions will be allowed when entering lemmas to be

proved.

4.2 Implementation and Theory

A SEQUEL proof procedure uses a sequent calculus notation, while [BM79] mostly presents a
system based on rewriting, and nqthm actually uses a clausal notation. Due to time constraints
and the complexity of the ideas involved in coding an inductive framework for SEQUEL, the

simplest possible internal representation of a conjecture was chosen for INDUCT. INDUCT
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therefore uses a hypothesis-free sequent-calculus notation, with a single type (true) for the wffs
in the consequent t-ezpr. Internally, the conjecture we are attempting to prove is represented as
an zfexpression — that 1s, all logical connectives are rewritten to their equivalent if-expression
at the earliest opportunity. To ease interaction, however, i(fexpressions are translated to their
equivalent logical form before being printed. This has produced some less powerful versions of
the rewriting techniques used by Boyer and Moore, but has allowed for the concentration of
effort on the more in-depth areas of the proof procedure, particularly on the induction heuristics.
Continuation of this work should not require a great deal of changes to the code which already
exists (see §5 for more details).

SEQUEL is not designed for complete automation of the proof procedure, nor does it have
fully developed capabilities to allow functions to use the proof tool without human involvement.
The framework therefore has been designed to work from within the proof tool. A function
start-induct is used to bring the proof tool up. Any lemmas which the user wishes to prove are
given to the system as arguments of the function prove-lemma. Use of the SEQUEL primitive
sequent calculus operations is not recommended as extra information is held separately from
the current conjecture and this will not be amended during, say, a SEQUEL rotate operation.
Again, a discussion of the problems this would cause in further development of the framework,

and suggestions about how to overcome this are presented in the next chapter.

4.2.1 Control Mechanisms

The heuristics to control which process to apply to a conjecture next in the search for a proof is
one of the most important parts of the search procedure. Following Boyer and Moore, INDUCT
uses a waterfall approach: when a conjecture is first presented for proof, it is passed through the
simplification procedure to a fixpoint, then the resulting new conjecture is passed to the unfolding
procedure. If the unfolding procedure allows the unfolding of a recursive call within the conjecture
then the resulting new conjecture is returned to the top of the waterfall again. If the unfolding
procedure makes no change to the conjecture, then INDUCT will attempt to produce a valid
induction. Once an induction has taken place, we add the extra phases of elimination, local
generalisation (see §4.2.5.1), distribution of if (see §4.2.4) and generalisation after unfolding and

before induction.

4.2.2 Type information

INDUCT inherits functions and types from SEQUEL. Before a recursive function can be used
in a conjecture presented to INDUCT for proof, the function must have been defined both to
SEQUEL and INDUCT. First, the function must be defined in SEQUEL and be type-checked
under XTT. The signature of the function should only involve lists and integers in arguments
where the argument is other than a place-holder. Ideally, only the types integer, (list integer) and
(list o) should be used (where a may be any SEQUEL anonymous type). Once a function has
been type-checked by SEQUEL, it must be passed through the SEQUEL function metarewrite
and defined within an INDUCT session in order the check that the definition complies with the
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definition principle. The SEQUEL function metarewrite produces an auxiliary function used by
the function unfold to allow the unfolding of recursive functions. The SEQUEL unfold is not
exactly what is required by INDUCT, however — certain changes to the resulting expression
must be made to keep the expression within the expected norms of INDUCT. These alterations

include:

e translation of calls of the function list to the appropriate calls of cons — INDUCT does
not include the list function in 1ts construction of a list structure, expecting functions to

have a rigid number of parameters;

e removing optimisations using local assignments (introduced by SEQUEL with fastcode

optimisation — see [Tar93b]);

e translation of calls of and and or with more than two arguments to nested applications;

e translation of ¢{a/d} *r to the appropriate nests of the well-typed functions head and tail.

Basically, these reduce the SEQUEL system calls produced by metarewriting to the standard
simple functions known to INDUCT.

Checking that a recursive function definition satisfies the definition principle is simplified in
INDUCT, since any measure function which might be used in an induction lemma must also
be typed, and this type information reduces the set of induction lemmas which might be used to
Jjustify a definition.

During induction, the number of base cases which need to be checked is often reduced, since
degenerate cases do not have to be considered. For instance, the definition of plus
(define plus

{integer integer -> integer}
Oy >y
x y => (1+ (plus (1- x) y)))

gives us the induction scheme

T, (not (zerop z)), (P (I-z)y)F (P z y)
I'F(Pxy)

as it does in nqthm. In INDUCT, however, zerop is defined as
(define zerop

x —> (equal x 0))

so in INDUCT, the single base case for the above induction scheme is

(implies (equal z 0) (P z y))

instead of having the extra base case:

(implies (not (number z)) (P z y)).

as in nqthm.
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4.2.3 Simplification

The simplification algorithm contains three parts — the use of unconditional rewrite rules, the
use of conditional rewrite rules, and the use of governing terms (the test expressions from if
expressions) as rewrite rules for the governed terms. Unconditional rewrite rules are the simplest
of these. The only problem here is with symmetric rewrite rules — rules such as (equal (plus
z y) (plus y z)) which can be used in an infinite loop. The solution implemented is similar to
that produced by Boyer and Moore, although it fails in one respect. The terms in the conjecture
to be rewritten are packed into a string (ignoring list construction), so that the expression (foo
(bar a?) y) becomes the string “foobara?y”. Say we have a rewrite rule (foo z y) — (foo y z),
and have a conjecture including (foo (bar a?) y). The rewrite rule be used in this case since (for
a lexical string measure) “foobara?y” < “fooybara?”. The problem with this comes with such
contrived expressions as (fo oa? b?) which is equivalent (in terms of the string that it is packed
into) to (foo a? b?). While it is possible to imagine (or to deliberately) create a situation where
this prevented a proof being found the likelihood of it occurring in the usual course of events is
very small.

The use of governing terms as rewrite rules for an expression is implemented side-by-side
with the use of unconditional rewrite rules. The main problem associated with this is how to
use equality rules. There are three ways a term (equal expr, expr,) can be used as a rewriting
rule: rewriting (equal expr, expr,) and (equal expr, expr,) to t; rewriting expr, to expr,; or
rewriting expr, to expr;. (We do not need to worry here about symmetric rewriting since we
are using a rule involving specific terms, not binding a generic rule which may then be used
with different bindings). The use of a governing term to perform the rewriting of (equal expr,
expry) and (equal exprsy expry) to tis actually not required provided we rewrite expr; to expr,
or vice-versa, since we will then have an expression (equal a a) where ais expr, or expry. So, we
need a decision mechanism for deciding which way to use the equality. We must be careful here
with certain sorts of term, specifically terms such as (equal z (foo z)), where we could continually
rewrite z to (foo x) and never end, merely nesting further and further calls of (foo (foo ... (foo
z) ...)). So, the first criterion we use is that if expr; is a sub-term of expr, then we use the
governing term to perform the rewrite expr, — expr; (and of course the reverse if expr, is a
sub-term of expr,). Secondly, if only one of the two terms is a variable that is not contained in
the other term, then we rewrite the variable to the other term. (We will see later that due to
the interaction between two other heuristics, this occurs quite often and produces useful results.)
Thirdly, if expr; is an explicit value then we will perform the rewrite exzpr, — expr, (and again
the reverse is expr, is an explicit value — we will never find that both expressions are explicit
values since only identical explicit values are equal,? so that the governing term would have been
rewritten to ¢ previously). Failing all of the above, we use the governing term to rewrite (equal
expr, exprsy) and (equal expr, expry ) to t only. (We must also note here that when we have used
the abstract tactic, any governing terms are stored as sequent assumptions, and are included in

the governing terms which we use as rewrite rules at this stage.)

2Free data structures are not permitted in nqthm or INDUCT.
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The implementation in INDUCT of conditional rewrite rules is weak when compared to the
equivalent process in nqthm. If we have a conjecture involving the expression (foo z), and the
conditional rewrite rule (implies (bar z} (foo x)) then we rewrite (foo z) to an expression

(imp-lemma (foo z) (bar z) t)
and then use unconditional rewrite rules and propagation of governing terms on the hypothesis
term (bar z). If we are then left with (emp-lemma (foo z) t t), we return ¢, whereas if we have
(imp-lemma (foo z) e t), where e is any expression other than ¢, then we return (foo z). If the
conditional rewrite rule was of the form (implies hyps (equal e f)) then we will use this to rewrite
e to fprovided we can establish hyps in the method above (subject to the same rules governing
symmetric unconditional rules above where applicable).

This method is significantly inferior to that used by Boyer and Moore for nqthm where chains
of conditional rewrite rules may be used, each further rule being used to prove the hypotheses of
previous rules (under some restrictions to prohibit infinite loops occurring).

There is one way in which INDUCT is superior to nqthm, which is in the use of free
variables in the hypotheses of conditional rewrite rules. As stated in §3.3.2.2, nqthm attempts
instantiations for free variables only where an appropriate term exists in the conjecture to which
the full hypothesis term containing the free variable may be matched. Given the strong typing
of INDUCT, we are able to identify all the terms in the current conjecture which are of an
appropriate type and attempt to use them to instantiate the free variable. Once we have iden-
tified these terms, INDUCT’s fast but weak checking for conditional rewrite hypotheses means
that these extra possibilities do not slow the framework too much in general, although proving
too many conditional rewrite rules with free variables still produces a bottleneck in the proof

procedure.

4.2.4 Distribution of If

To allow for easier identification of terms for generalisation and local generalisation, calls of if
are distributed to the outside of the current conjecture. This relies on the fact that

(foo (if z y z)) = (if z (foo y) (foo z)).
It is performed after simplification and unfolding since these two processes will often remove calls

of if before they are distributed, reducing the time taken to find a proof.

4.2.5 Generalisation

The INDUCT generalisation heuristics are equivalent to the nqthm heuristics, although the
use of generalisation lemmas (already minor in nqthm) is downplayed even further since many
of the lemmas in nqthm are type set specifiers which are superseded by the strong typing
INDUCT inherits from SEQUEL. As we have already seen, interaction is also possible during
the generalisation heuristic. This was included due to the assertion by Moore (in [Mo093]) that
the nqthm generalisation heuristic was in general too weak to be very useful. The possibilities
for further strengthening of the generalisation heuristic and/or of the interaction available are

discussed in the final chapter.
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Other than the explicit generalisation heuristic, there is the cross-fertilisation heuristic for
the use of equality hypotheses to rewrite terms in the conclusion of an implication expression.
The cross-fertilisation heuristic is not fully implemented in INDUCT due to the implementation
not splitting up top-level conjunctions of sub-goals. A replacement (less powerful) heuristic has
been added, called local generalisation, which covers the discarding of irrelevant hypotheses and
which displays similar results to cross-fertilisation (particularly when the interactions of the local

generalisation and generalisation heuristics are considered).

4.2.5.1 Local Generalisation

Local generalisation is the name given to the process of discarding irrelevant governing terms.
Some care is required in identifying terms which may be discarded. In nqthm, any literal may
be discarded from a clause while retaining soundness in the proof. In INDUCT, we do not
have a syntax of literals, but have a single expression which will usually involve multiple levels of
if-expressions nested only within the branches (calls of if within a test are distributed according
to the rule
(if (if test 11 1) 1o ro) = (if test (if Iy ls vo) (if r1 1z 72)).
If we have a conjecture
(if test left t) or (if test t right),
we may generalise these to left or right respectively and still maintain soundness. (Note that the
term governing left is test and the term governing right is (not test).) In general any sub-
expression of this form may also be locally generalised by discarding the test, except where the
sub-expression is a negated one, i.e. if, within the top-level expression, there are an odd-number
of occurrences of (not z), where z contains the sub-expression to be locally generalised. To give
a concrete example, say we have the conjecture
(not (if (equal z 0) (foo z) t)).
If we distribute the if from within the not, we get the conjecture
(if (equal z 0) (not (foo z)) nil),
which no longer fits our requirement that we are dealing with a conjecture logically equivalent
to an expression of the form (implies test expr), which may be soundly generalised to simply
expr. So, we only locally generalise certain sub-expressions. We still need to decide which to
locally generalise — the reasoning behind such generalisation is the same as that for discarding
irrelevant literals in nqthm (see §3.3.8), and similar criteria are used. Suppose we have the term
test governing the term ezprin an appropriate position for local generalisation within the current
conjecture, and that vars is a list of all the variables occurring in the conjecture except those

occurring only in test. We may locally generalise and discard test where any of the following hold:

o test is of the form (equal e z) or (equal z ¢), where z is a variable which does not occur in

expr;

e test is of the form (not (equal xz e)) or (not (equal e z)), where e an explicit value and z is

a variable which does not occur in expr or
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e test contains variables which are not in vars (i.e. there are variables in test which occur

nowhere else in the current conjecture.

When we consider the interactions of the generalisation and the local generalisation proced-
ures, we must be aware of the order in which they are applied, and of any intervening processes.
To re-iterate the waterfall model, after we perform the first induction in a proof, we have the
stages simplification, unfolding, elimination, local generalisation, distribution of if, generalisation
and induction in the waterfall. Thus, once we have performed a generalisation, we will return
to the top of the waterfall and perform simplification, unfolding and elimination before we reach
local generalisation. Say we are trying to prove the commutativity of plus in INDUCT. Follow-
ing an induction (and having simplified the base case to ¢t and performed another induction) we
will have the conjecture

(implies (equal (plus x y) (plus y z)) (equal (1+ (plus z y)) (plus y (1+ z)))).
The equality (equal (plus z y) (plus y z)) does not fall into any of the categories for use as a
governing term to rewrite one argument to another, so it has no effect as a governing term. Once
we reach the generalisation procedure, we will find that (plus z y) is an appropriate term for
generalisation, occurring in both a hypothesis and the conclusion of an implication. We therefore
generalise (plus z y) to the new variable z giving us the conjecture
(implies (equal z (plus y z)) (equal (14 z) (plus y (1+ z)))).
This conjecture is passed through the simplification process, at which point we use the equality
hypothesis (equal z (plus y z)) to rewrite all occurrences of z in the conclusion to (plus y z).
No further manipulation of the conjecture is performed until we reach the local generalisation
procedure with
(implies (equal z (plus y z)) (equal (1+ (plus y z)) (plus y (1+ z)))).

The local generalisation procedure identifies the hypothesis (equal z (plus y z}) as appropriate to
discard since it contains a variable equated to another term. We therefore produce the conjecture
(equal (1+ (plus y z)) (plus y (1+ z))),
which is a cleanly stated sub-goal and appropriately stated for proof by induction. If we examine
this process closely, we see that if we have an induction hypothesis (equal s t} and a conclusion
(equal (f s) t'), where t' is a similar expression to ¢, but is not identical to it,® then we will gener-
alise s to a new variable, replace that new variable in the conclusion with ¢, and locally generalise

to discard the induction hypothesis leaving only (equal (f t) t'), which is what we require.

4.2.6 Induction

It is in the induction-related procedures that INDUCT differs most widely from nqthm. The
implementation of the definition principle in INDUCT makes a wide use of the type informa-
tion available, reducing the search space for justifications of a recursive function definition which
would suggest induction schemes, but does not include searching for transitive chains of induc-

tion lemmas to justify functions. The collection of candidate induction schemes from a conjecture

3This situation is extremely common in inductive theorem proving and the rippling tactic [Aub79] and its

extensions are based on this observation.
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in INDUCT is equivalent to the same process in nqthm (including as it does the guarantee
of soundness for those schemes), however, the candidate schemes are not separated for differ-
ent branches of a top-level ‘and’ in a conjecture. This weakness would be avoided by a fuller
implementation of a sequent calculus system for INDUCT (see next chapter). The selection
of induction schemes from among the candidates suffers from the lack of separation of different
sub-goals, although this can be combated by using the interactive setting for induction and the
abstract tactic, manually separating the subgoals of a conjecture and allowing INDUCT to work
on them separately by induction (although this approach currently suffers from a lack of flaw
identification in the interactive induction scheme selection process). The automatic induction se-
lection criteria only include flaw identification and one simple tie-breaking rule for equally flawed

schemes.

4.2.6.1 The Definition Principle

The heuristic controlling the search for ways to satisfy the definition principle is simplified since
only measure functions with appropriate input types can be used to justify the function under
examination — thus when trying to justify the definition of Peter’s version of Ackerman’s func-
tion, we need only try induction lemmas whose measure functions take numbers as input, and
can safely ignore lemmas whose measure function is, for example, length. INDUCT includes
a system for the automatic identification of lexicographic measures, which current versions of
nqthm do not. However, INDUCT does not form transitive chains of measures so that, for
instance the lemma
(implies (and (not (zerop x)) (not (zerop (1- x)))) (lessp (ident (1- (1- x))) (ident x)))

(where ident is the identity function for numbers) is required to allow the definition of half:
(define half

{integer integer -> integer}

0->0

1 ->0

x => (1+ (half (1- (1- x)))))

In its initial configuration, INDUCT only has a single induction lemma available for use
with integers. This lemma uses the well-founded relation lessp and the measure function ident
(an identity function) stating that (1- z)is less than z. The function ident with signature (integer
— integer) is required for the same reason nqthm requires the equivalent function count in the
equivalent lemma — namely that induction lemmas include the same measure function to be the
top-level function call of both arguments of the well-founded relation function call. Ident is used
in the case of numbers, and length in the case of lists in INDUCT, rather than using the same
function (count) for both, since measure functions in INDUCT are required to have appropriate
non-disjunct types (i.e. the signature of the measure function should not have an input type of

the form (or a 3)).

Other than restricting the search pattern to induction lemmas with appropriate types for the
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measure functions, and given the lack of transitive chain formation, INDUCT performs similarly
to the strategy described in [BM79] when justifying a recursive function definition. Formation
of induction schemes suggested by a recursive function definition also adheres to the standard

supplied by Boyer and Moore.

4.2.6.2 Performing Induction

As stated above, the main restrictions on the INDUCT framework during the induction process
are that the current conjecture may contain separate sub-goals which do not share an appropri-
ate induction, and that selection between equally flawed candidates is done via a very primitive
system. Due to the simple syntax chosen for INDUCT, the conjecture
(and (lessp (fz y) y) (lessp z (g z y)))
is not split into the two sub-goals (lessp (fz y) y) and (lessp z (g z y)). If (fz y) and (g z y)
suggest schemes which can be merged, then this will not cause any problems. If (f z y) suggests
a scheme
T, (not (zerop y)), (P z (I-y)) F (P z y)

re(Pazy)

and (g z y) suggests the scheme
T, (not (zerop z)), (P (I-z) y) F (P z y)

I'F(Pxy)

then the schemes will not merge, and each is flawed with respect to the other (since z is an
induction variable in the second and an unchanging variable in the first, and similarly for y in
the reverse fashion). Thus, whichever induction we choose will probably prove one half of the
top-level and, but leave the other difficult or impossible to prove.

INDUCT’s merging heuristics include two refinements of the original heuristic as stated in
[BM79], one from [Ste88] (see below), and another which suggested itself during coding — In
3.3.4.3 we examined the merging of induction cases from two schemes, where there was a clash
of substitutions. [BM79] suggests that a random choice is made as to which is chosen, since
the merged scheme will be less than perfect for one of the expressions suggesting the differing
schemes. Such a random choice would appear to be at odds with the very precise nature of the
other methods of assessing suitability presented in [BM79]. On reflection, it would appear that
if one of the original schemes was better overall than the other then the substitution from this
better scheme should be chosen. An even more effective way to avoid this perceived problem
is the one chosen for INDUCT, which is to produce both possible mergers of the induction
schemes. Then, once all the induction selection heuristics have been applied, whichever scheme
is more suitable will be chosen at this stage — only if the two schemes are still equally useful will
the choice be made at random (although this is unlikely to happen as Boyer and Moore point
out that only when some symmetry is at work between the expression suggesting the schemes do
such equally ‘good’ schemes present themselves following all their selection heuristics).

The merging heuristic (following theory put forward by Stevens in [Ste88]) includes subsump-

tion as a special case by allowing mergers between schemes using multiple instances of the same



-57-

destructor function and merging them to their lowest common multiple of instances (for example
a scheme with the substitution (7- (1- z))/z will merge with a scheme including the substitution
(1- (1- (1- z)))/x to form a scheme with the substitution (1- (1- (1- (1- (1- (1- z))))))/z, and
including the appropriate base cases).

Once the merging has taken place, INDUCT includes only a rudimentary selection process
compared with nqthm. A flaw detector system, based on the principles presented in [BMT79]
and more fully explained in [Ste88] is implemented — the original implementation by Boyer
and Moore of the theory in [BM79] apparently flawed schemes irrespective of the status of the
‘flawing variable’ as a member/non-member of the measured subset justifying the induction.
Once the candidate induction schemes have been separated into flawed and unflawed schemes,
only rudimentary selection criteria are applied — any unflawed scheme is preferred to any flawed
scheme; if more than one unflawed scheme 1s available or if there are no unflawed schemes available
and there 1s more than one flawed scheme, then the scheme ‘covering’ the most expressions
is chosen. An induction scheme ‘covers’ an expression if that scheme was suggested by the
expression, or if that scheme was formed by merging the scheme suggested by that expression

with other schemes. If more than one scheme is still available then a random choice 1s made.
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Chapter 5

Conclusions and Further Work

This chapter brings the thesis to a close by drawing conclusions about the validity of the ap-
proaches taken during the project and the use of SEQUEL as an enabling technology for work of
this sort, and by examining the implications of these conclusions regarding further development
of INDUCT. One of the reasons the current implementation uses an unsatisfactory theoretical
basis is that emphasis was placed on efficiency too early in the development of the system. (The
overheads of iteration using the SEQUEL system logical functions of refinement and logical
rewriting are quite large when compared with using an auxiliary function to perform all the
iterations as a single logical rewriting operation.) The following discussion of how the frame-
work might be developed focuses on the theoretical basis rather than on the efficiency of such an

implementation.

5.1 INDUCT vs ngthm

The original aim of the project was to produce something which could be integrated into the
SEQUEL type-checker, using the theory presented by Boyer and Moore. Unfortunately, [BM79]
is not a book which clearly and concisely presents that theory in a generic, easily understood
form, and even those papers presenting a rational reconstruction of the heuristics do not always
illuminate the subject as they could. Despite its obvious importance, indeed its requirement, as
a technique for automatic program verification, (semi-)automatic induction remains an esoteric
field, understood completely only by those who have been involved in building or developing such
a system. The literature on the subject therefore tends to be couched in terms of the system
developed rather than general logical formulations. Therefore, the development of INDUCT
was diverted from an implementation in a typed sequent calculus system and became an imple-
mentation of a slightly rationalised version of the theory presented in [BM79]. On reflection, the
original goals of the MSc were set far too high in terms of the resulting implementation. Instead
of aiming to produce a system capable of automatic proof of complex conjectures, the time might
have been better spent attempting to translate the theoretical basis of nqthm into one which
might later be implemented in SEQUEL, with only minor forays into producing large amounts

of working code. The project was hindered on both sides of the equation, since some aspects of
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SEQUEL make it less than ideal for this particular sort of framework (see §5.4).

With hindsight, too much time was spent on understanding the Boyer and Moore theory by
implementation of an analogue of nqthm in SEQUEL, rather than concentrating on translation
of the early implementations into a more appropriate SEQUEL format. As a project, the MSc
has produced something of a blind alley in terms of a useful system, although much of the code

produced would be useful as a basis for implementing a more rationalised framework for induction.

5.2 A Rational Development of INDUCT

As can be seen from §2, SEQUEL takes a new approach to the problem of coding logical frame-
works in a form amenable to automation of proof. The sequent calculus based on the proof
as type-checking principle is very powerful for certain logical paradigms. SEQUEL is ideal,
for instance, for implementation of constructive type theory (a basic framework implementing
Thompson’s TTy was produced in only a weekend for example). There are problems with some
other implementations, however, when the complexities of the SEQUEL syntax do not merge
easily with the object syntax of a framework. The object language of Boyer and Moore is untyped
Lisp, essentially just functional expressions. The assumed meaning of a conjecture is conjecture
= t for all values of the variables present. The natural implementation of such a framework is
to use explicit typed universal quantification of variables over a conjecture such as stating the
commutativity of the function plus as
Va:N Vy: N (equal (plus z y) (plus y x)):true

However, one of the core reasons that a system such as nqthm is useful for proving properties of
highly complex programs is the increment hierarchy, where most conjectures are merely building
blocks from which a final, useful, conjecture is proved. This approach is well-known to mathem-
aticians, whose work often splits a proof down into numerous lemmas, upon which the short final
proof depends, which lemmas are subsequently (or have been previously) proved.

Suppose we have a system including the standard rule for elimination of typed universal quan-
tification in the consequent:

T, a:at Dla/z]: 8
'eVe:a D

Where a does not occur in D or T.

and in the antecedent:
TFaa« T, a:a, D[a/x]: 3, Yz:a D: B F A
I, Vera D: AL

Suppose we prove the distributivity of the successor function from the second argument over plus:
Va: N Vy: N (equal (plus z (14 y)) (I+ (plus x y))):true
If we next try to prove that plus is commutative:
Ve:N Vy: N (equal (plus z y) (plus y z)):true
then during this proof we will have the conjecture:
a:N, b:NF (equal (plus a (14 b)) (I+ (plus a b))):true

which is simply an instantiated version of the distributivity property proved before. If we have

made the distributivity law above part of the set of assumptions I', then we can have the proof



-60-

of the commutativity of plus:

|_

T, (equal (plus a (14 b)) (I1+ (plus a b))):true,
Vz:N Vy: N (equal (plus z (14 y)) (I+ (plus z y))):true, a:N, b:N
F (equal (plus a (14 b)) (1+ (plus a b))):true
[, Va:N Vy: N (equal (plus z (1+ y)) (14 (plus z y))):true, a:N, b:N

)
) )
)

F (equal (plus a (1+ b)) (1+ (plus a b))):true

T, Y2: N Vy: N (equal (plus z (I1+ y)) (I+ (plus z y))):true

FVa:N Vy: N (equal (plus x y) (plus y x)):true

This is a valid proof (given appropriate steps in place of the ), but in terms of a readable and
automatic system, it is virtually unworkable. There are two main problems. The first comes from
the difficulty of using an assumption of the form

Ve:N Vy: N (equal (plus z (1+ y)) (I1+ (plus z y))): true
to rewrite another t-ezpr

(f (plus = (14 y))): 8

to the t-expr

(f (4 (plus @ 1))):5.
The second problem is that the current sequent would quickly become unwieldy and finally
unusable for a human, and extremely inefficient for an ATP.

In its current formulation, INDUCT does not have the same problems, since conjectures
are implicitly universally quantified and were designed to be included in a SEQUEL function
which performed rewriting on a wff — thus a lemma of the form (equal expr, expr,) would be
used to rewrite expry to expry, under certain restrictions to prevent infinite looping in the case
of symmetric rules (i.e. commutativity rules). There is a separate encoding for using rewrite
lemmas of the form

(implies hyps rewrite)
where there are conditions on the rule being applicable (such as one of the variables in the rule
being non-zero).

Encoding such rules into a separate function which has type (wff — wff)} also avoids the
problem that SEQUEL is designed to manipulate t-ezprs, not just wffs, the two forms of manip-
ulation being refinement (which manipulates t-ezprs within sequents) and logical rewriting (which
manipulates single ¢-ezprs). The recursive structure of wifs in INDUCT causes problems — we
may have the wif (equal (foo z) (bar z)) in the consequent t-ezpr of the current sequent. It is
impossible to define a SEQUEL logical rewrite rule from the lemma

(equal (foo z) (fool z))
which will cover all possible positions of the expression (foo z) within a t-ezpr in the current
sequent, even if we use higher-order pattern matching, since (foo z) may occur at an arbitrary

depth within the wff of the t-ezpr. In fact, we may come across instances where we do not wish to

apply the rewrite suggested by the equality hypothesis (equal (foo z) (fool z)) to all occurrences
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of (foo ) within the consequent (we make no distinction here between, say, inductive hypotheses
which involve equality relations, and lemmas introduced as assumptions) for instance if we wish
to perform cross-fertilisation.

The answer to this is to implement the logical equivalent of a structured editor. Fortunately,
the theory and practice of this have already been explored by Tarver for a partial evaluator built
in SEQUEL (see the MIX framework available with the SEQUEL system files). This allows
us to concentrate our efforts on a sub-expression of the wff of the consequent, and avoid the
manipulations affecting other parts of the consequent wff.

Ignoring efficiency for the moment, and assuming that we have implemented equality in some

form such as:

'k expry: g

T, (equal expry expry) :true b expr:
then we might encode the distributivity law stated above in a tactic which examines the current
conjecture for a sub-expression of the form (plus e1 (1+ es)), invokes the distributivity-of-1+-
over-plus rule:
I, VYaN VYyN (equal (plus x (14 y)) (1+ (plus = y))) F D: g

T'+D:g

invokes the rule for elimination of antecedent universal quantifiers twice and then invokes the
structured editor to find the appropriate sub-expression(s) in D in order to use the equality rule.
In this system, we would need an axiom allowing the introduction of a previously proved lemma
as an assumption, in a similar method to the SEQUEL primitive lemma, but without the need
to prove the lemma in a separate sequent.

Such an implementation would lend itself well to the addition of a proof-planning control
mechanism along the lines of the Oyster-CLAM system (see [BVHHHS91]), rather than to a brute
force application of rewriting to a normalised form as was the case for nqthm and the current
version of INDUCT. Major parts of Boyer and Moore’s unfolding heuristic are dependent upon a
normalised form of the unfolded expression being available, so that a normalising technique would
still be required were we to use Boyer and Moore’s technique. To a proof-planner implementing
rippling, unfolding of a recursive function is merely another type of wave rule so this should not
be a problem.

The implementation of the above system in SEQUEL would be fairly straightforward, al-
though the animation of these aspects (which are phases of the proof procedure designed to sup-
port induction) would be more complex than the current implementation of INDUCT. There is
still a gap in the support offered by SEQUEL for a system such as this. If we prove a subsidiary
lemma during the proof of our principle conjecture, then that lemma is available for use (possibly
more than once) in that proof. We would like to be able to do two things, however. Once having
proved a conjecture, we wish to be able to access it as a system axiom, and it would be useful to
add any subsidiary lemmas proved to the system also. If we were to follow the current implement-
ation of INDUCT, then all operations would be performed from within the proof tool, which
certainly allows us to add subsidiary lemmas to the rule base ‘on the fly’. However, due to the

lack of system provision for storing information other than the current sequent, this might prove
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difficult to achieve while still allowing access to the full power of SEQUEL’s sequent calculus.
SEQUEL was also not designed to allow the proof tool to be used as an auxiliary function of
a higher level program. Therefore there is no facility for calling the proof tool with a conjecture
to be proved and with a tactic to be called upon proof tool initialisation. Following a request,
Tarver has implemented a partial version of this, call-prooftool which initialises the proof tool with
a supplied sequent (in external syntax). This does not include a tactic name as an argument,

however, instead requiring the user to invoke a tactic once the proof tool has been initialised.

Together, these omissions make SEQUEL difficult to program in its current form for what
is envisaged here, without some additions to the system code. The most pressing need would be
provision for an automatic calling of the proof tool with both an initialising sequent and a tactic
to be performed. Such a capability would allow two important developments of the improved
INDUCT framework. Firstly, a conjecture presented for proof would not need to be stored
within the confines of the proof tool, allowing information such as the original conjecture and
an indicator as to how the conjecture should be used to be stored only as local variables rather
than as globals within the proof tool environment. Secondly, the automatic use of the proof tool
would then be facilitated during analysis of new recursive function definitions when attempting
to satisfy the definition principle. Currently, such analysis must be carried out by calling a tactic
from within the proof tool, which is an inelegant solution at best. There remain two problems
which would require changes to the system code for the proof tool, both of which stem from the
lack of any provision within SEQUEL for information other than the current sequent to be held
linked to, but not part of, the current sequent. While it is possible to define global variables to
hold such information, the lack of dynamic system links between the proof tool and the global
variables prevents full use of the sequent calculus representation inherent in SEQUEL. For ex-
ample, if we wish to hold the same set of information for each sequent in the stack, then we
must define a global variable which lists these sets in the appropriate order, and prevent the user
performing a SEQUEL primitive rotate, which changes the order of the sequents on the stack.
Automatic use of rotate would also require the appropriate rotation of any global variables held.
The second circumstance in which we might wish to hold information which is not strictly part of
the current sequent is when we prove a subsidiary lemma as part of a proof. Apart from wishing
to use such a lemma in future proofs without having to prove it more than once, we might wish
to use it within more than one sequent currently on the stack (SEQUEL does not provide a
mechanism for doing this other than performing the proof of the lemma for each sequent). The
latter problem may well be a general criticism of the SEQUEL interface. The former problem
only occurs in incremental frameworks such as this, where each lemma proved is added to the rule
base of the system. One solution is to include in each sequent an extra hypothesis t-expr, say as
info * information where info is a wff which holds the information we require, such as the original
form of a lemma and a flag to indicate how it is to be used if proved. The original solution to this
problem was to include such information as part of the consequent ¢-expr and to work around it
when manipulating the sequent and remove it by use of SEQUEL’s external syntax. Working

around such an extra assumption would be relatively simple and although the external syntax
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mechanism would not allow the f-ezpr to be removed completely before printing, it might be
reduced to just an indicator that internal information is stored there. Another possibility for the
storage of the original form of a conjecture would be to adopt an answer-sequent. Thus instead

of the rule lemmas:

'k lemma:true I, lemma:truet A:a
T'FA:«a
we would have the rule
'k lemma:true I, lemma:true F lemma:true I, lemma:true - A:«
TFA: .

Once we had proved the I' F lemma:true sequent, we could then allow the automatic proof of
the T', lemma:true - lemma:true sequent to prompt the addition of lemma as a system rule.
However, use of the SEQUEL primitive rotate to switch the order of the sequents in the stack
could invalidate such a move, producing unsound results.

Justification for implementing this proposed system would require a gain in clarity, efficiency
or capability for INDUCT over nqthm and the other systems already implemented. In terms
of raw manipulations per second, INDUCT could never compete with nqthm since it has
overheads that cannot be avoided (in terms of its more complex proof structure which is written
in a framework for general frameworks, rather than one which is optimised for the particular
syntax of INDUCT). The more advanced features now implemented in nqthm-1992 (see [BM8§]
and proposed 2nd ed.) would not lend themselves to easy implementation under this system, nor
would it repay the effort taken to implement them. However, there are ways in which a SEQUEL
framework implementing the core ideas of [BM79] would be worthwhile. The inner workings of
nqthm are contained in approximately 100,000 lines of Lisp, and other implementations are of
similar size. SEQUEL is much more compact, and yet more easily understood (in my opinion)
than either Lisp or Prolog (the likely languages for such implementations). Further development
of a SEQUEL framework by a new researcher would be much simpler than further development of
nqthm or other such systems due to the cleaner environment. The SEQUEL proof tool provides
a consistent environment for developing different frameworks, and as such the integration of ideas

from differing logics is much simpler than it would be otherwise.

5.3 Constructive Type Theory and TT)

Take, for example, Thompson’s TT, a basic implementation of which is already available in
SEQUEL. TT; works by manipulating the types in t-exprs instead of the wffs in order to prove
a conjecture. The wff develops (usually) from a single variable into an expression defining a proof
of the original conjecture. In the case of quantification, the wff will be a A-expression defining
an anonymous function which produces a proof of the conjecture. Thus if we wish to prove that
Ve:NIy:N(< 2 y) this would be the conjecture
Fz:(Ve: N Jy: N (< 2y))
and we might get the resulting A-expression Az.(14 z) as inhabiting the type.
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A full explanation of constructive type theory and typed lambda calculus is beyond the scope
of this thesis, but a quick overview will be presented. Using Heyting’s Semantics for First Order

Logic (FOL) (taken from [Tar95]) we have:

A proof of p — ¢ is a function fthat maps a proof of p to a proof of q.

A proof of p A ¢is a pair (p,q) where p is a proof of p and ¢ is a proof of q.

A proof of p V ¢is a pair (¢, p) where either (a) i = 0 and p is a proof of p, or (b) ¢ =1 and p
is a proof of ¢.

A proof of = pis a proof of p — L where L is any absurdity.

A proof of Vz: A B is a function fwhich, for each member a of the domain A, maps a proof of
a to a proof of Bfa/z].

A proof of 3z: A B is a pair (a,p) where a is a member of the domain A and p is a proof of

Bla/4].

This may look fairly straightforward and not that different from the normal semantic interpret-

ation. Upon closer examination, however, there are some interesting implications of Heyting’s
Semantics. The law of the excluded middle is the first to become apparent. In the standard
semantics for FOL, we have the rule - A vV (-A) which means that we must be able to prove A
or A, whatever A is. However, in intuitionistic logic (as this interpretation is called, as opposed
to the classical logic which is the more usual interpretation), this is not the case, since it may
be beyond our powers to prove either, and being able to prove - AV (—=A) in intuitionistic logic
requires that we have proved at least one of the disjunct terms to be a theorem. There are some
other standard theorems of classical logic that do not hold in intuitionistic logic:

pvV-p

~(pAg) = (=pV—9)

-Vz:A B — 3Jz: A B

The last of these is probably the most interesting. Heyting’s Semantics state that a proof of
Jz: A B involves production of a proof p that a member a € A satisfies Bla/z]. This differs from
classical logic in that there is no provision for indirect proof. To prove that something exists we
must produce at least one instance of it, and it is this fact that gives rise to the description of
such logics as constructive since in proving something exists we construct an instance. So, for
example to prove that for each natural number there exists at least one natural number greater
than it, the proof would be a function which computes such a number. Such a proposition has
an infinite number of solutions: A z.(1+ z), A z.(1+ (1+ z)) ..., and many others. This also
introduces the idea of proofs as programs, where the proof of a proposition that something exists
can be thought of as a function to compute it. Thus the proof that for each two natural numbers
there exists another natural number equal to their sum returns a A-function which computes that
sum. We finally come to a link between this work and INDUCT, which is that a constructive
type theory framework requires induction as a means of proof. Induction within constructive
type theory is still an active area of research, in both how induction should take place in general
and in identifying which inductions to perform to prove a particular theorem. One problem in

constructive type theory is that there are often many different answers, all correct. Where the
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proof of a proposition is a function, we wish that function to be as efficient as possible. The way
a proof of an existential proposition is performed influences the resulting expression, and some
work has been done on ways to constrain the resulting A-function to ensure that it adheres to
second order properties such as being tail-recursive. Development of the SEQUEL framework
for TT( and intergration of the analysis methods from INDUCT into a single framework could

produce a powerful constructive type theory theorem prover.

5.4 SEQUEL as an Enabling Technology

SEQUEL brings together various ideas that have been present in the functional programming
and computational logic communities for many years. Tt’s syntax, combining the flexibility of
Lisp with the ease of programming and readability of a priority rewrite language, produces an
elegant and powerful language. Tt’s basis in Lisp allows access to a large, well-defined envir-
onment, providing easy access to optimised system functions and allowing complex procedures
unachievable in SEQUEL to be programmed in Lisp.

The type-checking mechanism is both flexible and clear, something lacking most of the other
typed functional languages available at present (e.g. Haskell has no provision for tracing the
progress of the type-checker through the process of checking a function definition).

The sequent calculus extensions provide a common ground for the definition of types and
logical frameworks, and although implementation of some logical systems requires considerable
translation from the original logical paradigm to sequent calculus, the resulting framework is
often much clearer than the original.

The clarity of SEQUEL code and the transparency of the type-checking mechanism are
both operationally expensive in terms of processing power, and despite some gains made in the
development of optimising subroutines in the SEQUEL to Lisp compiler (such as the fastcode
optimiser which locally binds repeated terms), hand-written Lisp will probably always be slightly
faster than compiled SEQUEL in a large implementation. The small performance degradation
is more than offset by the tremendous gains in programmer time that are made when considering
the implementation of theorem provers. Most of the verification systems implemented today are
designed for the testing and development of logical paradigms. Very few are developed (at least
initially) with a real-world application in mind (such as CYC, or the use of nqthm to verify VLSI
designs). Thus, the clarity of the proof process and the speed at which it is possible to amend,
enhance or extend the framework is far more important than gaining every last microsecond of
speed from the frameworks produced. Thus, SEQUEL is an good tool for logicians developing
and analysing the capabilities of different logics for various tasks or investigating properties of
logics, since prototyping and development of frameworks to automate proof in these logics is what
SEQUEL has been designed for.

The time taken to translate a logic into a form for implementation in SEQUEL will usually
be more than repaid by the researcher not having to spend their time implementing a system for
manipulating the terms of the logic. Use of the well-known sequent calculus allows researchers

with little knowledge of SEQUEL to grasp the nature of the logical frameworks implemented
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without having to learn a new notation for each logic presented.

SEQUEL itself has developed over the course of this project, so that there are aspects of
the project that have been implemented using inelegant software methodologies, and at times
the implementation of INDUCT has shown the need for capabilities not then available. En-
hancements to the current system are possible, as with all computer languages — as with natural
language, progress demands change and evolution to avoid extinction — but its current form is
highly useful for researchers working in theorem proving without the support of a large group of

research assistants implementing fragments of a larger system.

5.5 Final Remarks

Inductive theorem proving is an immense topic — there have been two large groups of researchers
extending the capabilities and usefulness of inductive theorem provers for more than fifteen years,
in Edinburgh and Austin, with countless others working alone or in small groups in many places
in the world. Developing another system to compete with those already produced seems at
first to be a useless procedure. However, the systems that exist today are those that have
developed over many years, taking inspiration from many sources, with heavy dependence on
obscure heuristics and dense implementations. Implementation of a new system designed for
typed induction, probably incorporating a constructive type theoretic approach, would clarify
much of the theoretical basis for the current state of the art, and allow a degree of rationalisation
(due to the clarity of SEQUEL’s sequent calculus) which may well open up new avenues of

research into the capabilities of inductive theorem proving.
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Appendix A

BNF Grammars for SEQUEL

A.1 The Core Language

This is the BNF grammar for the core language:

<input> ::= <term> | <list-structure> | <function-definition>
| (<identifier> <terms>) | (<identifier>)
<function-definition> ::= (define <identifier> <rewrite-rules>)

| (define <identifier> <signature> <rewrite-rules>)

<signature> ::= {<types> -> <type>} | {-> <type>}

<types> ::= <type> | <type> <types>

<type> ::= (list <type>) | (or <type> <type>) | <identifier> | <variable>
<rewrite-rules> ::= <rewrite-rule> | <rewrite-rule> <rewrite-rules>
<rewrite-rule> ::= <test> -> <result> | <test> <- <result>

| => <result> | <- <result>

<test> ::= <test-element> | <test-element> <test>

<test-element> ::= <pattern> | <guard>

<pattern> ::= <constant> | <variable> | <list-structure>
<list-structure> ::= [] | [<patterns>] | [<patterns> | <variable>]
<patterns> ::= <pattern> | <pattern> <patterns>

<guard> ::= (<identifier> <terms>) | (<identifier>)

<terms> ::= <term> | <term> <terms>

<term> ::= <pattern> | (<identifier> <terms>)| (<identifier>)
<result> ::= (<identifier> <terms>) | (<identifier>) | <term>

Context conditions:

1.<identifier> is a symbol that is not a <variable>.
2.A <variable> is _, w, X, y, z or any symbol ending with 7.
3.A <constant> is anything that is not a <list-structure> or a <variable>.

4.A <guard> may not contain a variable that does not come before it in the same rule.
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5.A <result> may not contain a variable that does not come before it in the same rule.

6.% signs must balance in a rule.

A.2 Sequent Calculus Extensions

The BNF grammar for SEQUEL’s sequent calculus notation is:

<theory> ::= <interactive-theory> | <non-interactive-theory>
<interactive-theory> ::=
(theory <identifier> :interactive yes <A-axioms>)
| (theory <identifier> :interactive yes
:pattern <yes-no>

<A-axioms>)

<yes-no> ::= yes | no
<A-axioms> ::= <A-axiom> | <A-axiom> <A-axioms>
<A-axiom> ::= <A-sequents> thus <A-sequents> | thus <A-sequents>

| <preamble> <A-sequents> thus <A-sequent>

| <preamble> thus <A-sequent>

<preamble> ::= :name <identifier>
| <side-conditions>
| :name <identifier> <side-conditions>
| <side-conditions> :name <identifier>
| :name <identifier> <side-conditions> <parameters>
| :name <identifier> <parameters> <side-conditions>
| <side-conditions> :name <identifier> <parameters>
| <side-conditions> <parameters> :name <identifier>
| <parameters> :name <identifier> <side-conditions>
| <parameters> <side-conditions> :name <identifier>

<side-conditions> ::= <side-condition>

| <side-condition> <side-conditions>

<side-condition> ::= (bind <variable> (<symbols>)) | (<symbols>)
<symbols> ::= <symbol> | <symbol> <symbols>

<parameters> ::= <parameter> | <parameter> <parameters>
<parameter> ::= :parameter (<variable> <type>)

<A-sequents> ::= <A-sequent> | <A-sequent> <A-sequents>
<A-sequent> ::= <A-context> |- <t-expr>

<A-context> ::= () | <A> | <t-expr> , <A-context>

<t-expr> ::= <term> * <type>

<non-interactive-theory> ::= (theory <identifier> <B-axioms>)

| (theory <identifier>
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:interactive no
<B-axioms>)
<B-axioms> ::= <B-axiom> | <B-axiom> <B-axioms>
<B-axiom> ::= <B-sequents> thus <B-sequent>
| thus <B-sequent> | <B-sequent> iff <B-sequent>
<B-sequents> ::= <B-sequent> | <B-sequent> <B-sequents>

<B-sequent> ::= <A> |- <t-expr>
Context conditions:

1.In a <non-interactive-theory> the <identifier>> has to be the same as the <type> in the

<t-expr> following ‘iff” or ‘thus’.

2.In 4ff’ constructions any variable occurring in the output sequent schemas must appear in the

input sequent schema.

3.In a <non-interactive-theory> the <B-sequent> that follows a token of ‘iff” cannot unify with

any <B-sequent> that follows any other token of ‘iff’.

4.<A> here is a terminal, not a category A. The BNF grammar here overlaps with the SEQUEL

syntax.

Thus the BNF grammar for the proof type is:

<proof> ::= <proof-object>

<proof-object> ::= [] | [<sequents>]

<sequents> ::= <sequent> | <sequent> <sequents>
<sequent> ::= [<typed-exprs> |- <t-expr>]
<typed-exprs> ::= [] | [<t-exprs>]

<t-exprs> ::= <t-expr> | <t-expr> <t-exprs>
<t-expr> ::= [<wff> * <type>]

Context conditions:

1. Proofs must be produced by typed functions with output type proof.
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Part of a Propositional Calculus

Proof

A sample session with a propositional calculus framework would be:

Step 1 [1]

?- (a => c¢)

1. (a => b)

2. (b => ¢)

TAB II>> INDIRECT-PROOF

Step 2 [1]

?- false

1. (- (a => ¢))
2. (a => b)

3. (b => ¢)

TAB II>> REWRITE "P=>Q==>P&~Q 1

Step 3 [1]

7- false

1. (a & (- <))
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2. (a =>b)

3. (b => ¢)
Step 8 [1]

7- false

1. b

2. a

3. (" ¢)

4. (("b) v c)

TAB II>> V-LEFT

Step 9 [2]

7- false

TAB II>> CONTRADICTION

Step 10 [1]

7- false

B W N
»

TAB II>> CONTRADICTION

yes
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Which corresponds to the sequent calculus proof:

l— H

¢, by a, (me) L (=), b, a, (me) FL

b, a, (mc), ((Hb)Ve)FL

(aA(=e), (a=0b), (b=>c)FL

(m(a=¢), (a=0b), (b=>c)FL

(a=b), (b=c)t (a=c).
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Appendix C

An Interactive Proof

SEQUEL Proof Tool

Step 1 [1]

?- "Nothing to Prove!"

INDUCT>> prove-lemma (equal (plus x (plus y z))

(plus y (plus x z))) rewrite

We are trying to prove:
(equal (plus x (plus y z))
(plus y (plus x z)))

We need to attempt an induction.

Please choose one of the following schemes:

0: No induction

1:
(and (implies (zerop y) goal)
(implies (and (not (zerop y))
(rewrite y (1- y) goal))
goal))
2:
(and (implies (zerop x) goal)

(implies (and (not (zerop x))



T4

(rewrite x (1- x) goal))

goal))

Please enter choice of Scheme by number or No Induction (0):

Both inductions are equally valid, so choose one at random.

Please choose amongst the generalisations below.

While trying to prove:

(implies (equal (plus x (plus 11467 z))
(plus 11467 (plus x z)))
(equal (plus x
(1+ (plus 11467 z)))
(1+ (plus 11467 (plus x z)))))
The following sub-expressions have been identified

as suitable for generalisation:

(plus x z) below ((0))
(plus 11467 z) below ((0))

Genl: (plus x z) below ((0))

Gen2: (plus 11467 z) below ((0))

Select one of:

0: None of the above.

1: None of the above (abort proof-procedure).
2: All of the above.

3: Some of the above.

Please enter choice (0-3): 1

If we prove the lemma

(equal (plus a? (1+ b?)) (1+ (plus a? b?)))
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for use as a rewrite rule, then the above conjecture will become

(implies (equal (plus z (plus 11462 z)) (plus 11462 (plus = z)))
(equal (1+ (plus z (plus 11469 z))) (1+ (plus 11467 (plus z z))))),

in which the (equal (1+ ¢?) (1+ d?)) term will be rewritten to (equal c? d?), giving us the

conjecture

(implies (equal (plus x (plus 11462 z)) (plus 11462 (plus z z)))
(equal (plus z (plus 11462 z)) (plus 1146% (plus z z)))),

which is trivial to prove, given that the hypothesis and the conclusion of the implication are the

same expression. So, we abort the proof procedure and prove an extra lemma.

Step 2 [2]

?- (implies (equal (plus x (plus 11467 z))
(plus 11467 (plus x z)))
(equal (plus x
(1+ (plus 11467 z)))
(1+ (plus 11467 (plus x z)))))

INDUCT>> prove-lemma (equal (plus x (1+ y)) (1+

(plus x y))) rewrite

We are trying to prove:
(equal (plus x (1+ y))
(1+ (plus x y)))

We need to attempt an induction.

Please choose one of the following schemes:

0: No induction

1:
(and (implies (zerop x) goal)
(implies (and (not (zerop x))
(rewrite x (1- x) goal))

goal))
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Please enter choice of Scheme by number or No Induction (0): 1

(equal (plus x (1+ y))

(1+ (plus x y)))
has been proved true!
Adding it as a rewrite rule.

;35 Compiling function induct-rewrite-ns

Having proved the new lemma, INDUCT returns to the original lemma and runs the proof

procedure with the new lemma as part of the rule base, proving it immediately.

(equal (plus x (plus y z))
(plus y (plus x z)))
has been proved true!
Adding it as a rewrite rule.
;55 Compiling function induct-rewrite-s

;;; Compiling function induct-rewrite-ns

Step 3 [1]

?- "Nothing to Prove!"

INDUCT>>
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