Tools and Techniques for
Machine-Assisted Meta-Theory

A thesis submitted to the
UNIVERSITY OF ST ANDREWS

for the degree of
DOCTOR OF PHILOSOPHY

by
Andrew A. Adams

School of Mathematical and Computational Sciences

University of St Andrews

August 1997

I, Andrew A. Adams, hereby certify that this thesis, which is approximately 40,000 words
in length, has been written by me, that it is the record of work carried out by me, and that

it has not been submitted in any previous application for a higher degree.

date signature of candidate

I was admitted as a research student in October 1994 and as a candidate for the degree
of Doctor of Philosophy in October 1995; the higher study for which this is a record was
carried out in the University of St Andrews between 1994 and 1997.

date signature of candidate

I hereby certify that the candidate has fulfilled the conditions of the Resolution and Regu-
lations appropriate for the degree of Doctor of Philosophy in the University of St Andrews

and that the candidate is qualified to submit this thesis in application for that degree.

date signature of supervisor

In submitting this thesis to the University of St Andrews I understand that I am giving
permission for it to be made available for use in accordance with the regulations of the
University Library for the time being in force, subject to any copyright vested in the work
not being affected thereby. I also understand that the title and abstract will be published,
and that a copy of the work may be made and supplied to any bona fide library or research

worker.

date signature of candidate

Abstract

Machine-assisted formal proofs are becoming commonplace in certain fields of mathematics
and theoretical computer science. New formal systems and variations on old ones are con-
stantly invented. The meta-theory of such systems, i.e. proofs about the system as opposed
to proofs within the system, are mostly done informally with a pen and paper. Yet the
meta-theory of deductive systems is an area which would obviously benefit from machine
support for formal proof. Is the software currently available sufficiently powerful yet easy

enough to use to make machine assistance for formal meta-theory a viable proposition?

This thesis presents work done by the author on formalising proof theory from [DP97a] in
various formal systems: SEQUEL [Tar93, Tar97], Isabelle [Pau94] and Coq [BBT96]. SE-
QUEL and Isabelle were found to be difficult to use for this type of work. In particular, the
lack of automated production of induction principles in SEQUEL and Isabelle undermined
confidence in the resulting formal proofs. Cog was found to be suitable for the formalisa-
tion methodology first chosen: the use of nameless dummy variables (de Bruijn indices) as
pioneered in [dB72]. A second approach (inspired by the work of McKinna and Pollack
[vBJMRY94, MP97]) formalising named variables was also the subject of some initial work,
and a comparison of these two approaches is presented. The formalisation was restricted to
the implicational fragment of propositional logic. The informal theory has been extended
to cover full propositional logic by Dyckhoff and Pinto, and extension of the formalisation
using de Bruijn indices would appear to present few difficulties. An overview of other work

in this area, in terms of both the tools and formalisation methods, is also presented.

The theory formalised differs from other such work in that other formalisations have involved
only one calculus. [DP97a] involves the relationships between three different calculi. There

is consequently a much greater requirement for equality reasoning in the formalisation.

It is concluded that a formalisation of any significance is still difficult, particularly one
involving multiple calculi. No tools currently exist that allow for the easy representation
of even quite simple systems in a way that fits human intuitions while still allowing for
automatic derivation of induction principles. New work on integrating higher order abstract

syntax and induction may be the way forward, although such work is still in the early stages.

Contents

1

3

Introduction

1.1 Logical Frameworks

1.2 Terminology o oo e
1.2.1 Sequent Calculus and Natural Deduction
1.2.2 Proofs, Derivations and Deductions
1.2.3 Unfolding

1.3 The Requirement for a Meta-Logic

1.4 OVEIVIEW . . . o o o o e e e e e e e e e

Permutation of Derivations in Sequent Calculus

2.1 OVervIewW

2.2 Three Sequent-Style Calculi oo

2.3 Relationships Between the Calculi

2.4 Permutationsin LIo

2.5 Weak Normalisation of Permutations
2.5.1 The Equivalence of MJ and NJ

2.5.2 Proof that Permutation Reduction is Weakly Normalising

Formalisation in Isabelle

3.1 A Brief Overview of Isabelle

-1

10

10

17

(34

3.2 An Isabelle Object Logic as a Meta-Logic

3.3 Isabelle asa Tool

Formalisation in SEQUFEL

4.1 TIntroduction to SEQUFEL
4.2 Meta-Theory in a SEQUEL Framework
4.3 Generalisation of the Method

4.4 Using a Logical Framework for Meta-Theory

A Brief Introduction to Formalisation in Cogq

5.1 A Quick Overview of Coq
5.1.1 The Basis of the Type Theory
5.1.2 Logical Notation in ASCIL
5.1.3 Definitions
5.1.4 The Minimality Principle and Inversion of Predicates
5.1.5 Performing Proofsin Cog

5.2 Formalisation of Proof Termsin Coqg

An Initial Formalisation in Coq
6.1 De Bruijn Indices
6.2 Formulae, Contexts and Variables

6.3 Derivations and Deductions

i

24

24

25

27

29

30

30

30

30

31

32

33

35

37

7

8

A Formalisation in Coq Using de Bruijn Indices
7.1 TInmitial Definitions
7.2 Decidability of Relationso
T.2.1 Setifb
7.2.2 Lifting
7.2.3 'The Usefulness of Boolean Functions
7.2.4 The Usefulness of Propositional Functions
7.3 Translation Functions
7.4 Derivations and Deductions L
7.4.1 Structural Rules
7.5 Permutation
7.6 Proof Techniques
7.6.1 Induction Principleso
7.6.1.1 Inductions on Simple Inductive Sets
7.6.1.2 Induction for More Complex Sets
7.6.1.3 Direct Induction over Families
7.6.1.4 Induction with Inversion
7.6.2 Strong Induction Principles o000

7.7 Summary and Conclusions L

A Formalisation in Coq Using Named Variables
8.1 Background of the Coquand-McKinna-Pollack Approach
8.2 NJ Formalised with Named Abstract Syntax
8.2.1 First Order Abstract Syntax for Terms.
8.2.2 (Restricted) Higher Order Abstract Syntax for Judgements
8.2.2.1 The CMP Approach for General Judgements and Predicates

8.2.3 Complexity of the CMP Approach

1ii

45

46

47

48

49

50

51

53

54

35

a8

a8

58

59

59

60

60

62

63

63

64

64

67

8.3

Scope of the Formalisation.

9 Related Work: Tools and Techniques

9.1

9.2

9.3

9.4

9.5

9.6

9.7

Introduction
Formalisations Using de Bruijn Indices
9.2.1 Strong Normalization of System F in LEGO
9.2.2 Verification of Algorithm W: The Monomorphic Case
9.2.3 Church-Rosser Proofs in Isabelle/HOL
9.24 Cogin Cog e
A Formal Theory of Pure Type Systems
Five Axioms of a-Conversion
HOL, ALF, Cog and LEGO
Higher Order Abstract Syntax

Higher Order Abstract Syntax with Induction

9.7.1 Restricted Higher Order Abstract Syntax with Induction in Cogq

9.7.2 HOAS with Primitive Recursion

9.7.3 First Order Logic with Definitions and Natural Number Induction

10 Conclusions and Further Work

10.1 Frameworks vs. Proof Assistants

10.2 Expansion of the Formalisation of the Permutation Theorem

10.3 Other Logics, Other Problems

10.4 De Bruijn Indices, the CMP Method and HOAS': Conclusions

10.2.1 New Tactics for Cog
10.2.2 Rippling
10.2.3 The Permutability Theorem for First Order Logic

10.2.4 Strong Normalisation of Permutation Reduction

v

71

71

71

71

72

73

73

74

74

10.4.1 De Bruijn Indices L 83

10.4.2 The CMP Method 85

10.4.3 HOAS o o 86
Bibliography 88
A Primary Definitions and Lemmas in Cogq 94
A.1 De Bruijn Index Formalisation 94
A.2 CMP Method Formalisation 108

B Full Development in Coq using de Bruijn Indices 116

Chapter 1

Introduction

The Study Of Formal Deductive Systems (logics) has a long history, reaching back through
the history of mathematics. With the advent of powerful digital computers in the latter
half of the twentieth century, we have seen an explosive increase of interest in formal logics,
in large part as a tool to understand the operation of those very computers. Increasingly
over the last two or three decades, investigations using these formal logics have been carried
out in software environments specifically designed for such work. The process of develop-
ment is fairly clear. A researcher invents a new system which is then implemented in a
suitable language or environment and theorems are formally validated within the deduct-
ive system, either through interaction, or automatically by using pre-programmed methods.

The processes modelled by these logics are complex, and recursive structures common.

1.1 Logical Frameworks

Techniques have been developed over the last two decades to make these investigations
easier, in particular to ease the job of defining the new logics in a formal environment.
To this end logical frameworks [HP91, HP93] implemented as ALF[AGNvS94], Eif [Pfe91],
Isabelle [Pau88] and SEQUEL [Tar93] have been developed. These frameworks provide
different but internally coherent approaches to the implementation of formal logics, freeing
the designer to work on theoretical issues and use of the system rather than tedious details
of program correctness and issues of representation in a general purpose language. The
resulting implementations are very useful in proving object-level theorems of the logic and
for exploring the deductive system. However, the implementation of a logic in a logical

framework does not give one access to machine support for meta-level judgements about the

CHAPTER 1. INTRODUCTION 2

logic, as opposed to deductions within the logic. For such theoretical work a pen and paper is
still the primary tool for most researchers. Some work has been done with machine-assisted

formal meta-theory, but it remains a very small part of the larger field.

The literature on logical frameworks and on special purpose implementations of common
logics (e.g. the various Isabelle object logics and the various implementations of type theor-
ies: NuPrl [CAT86], ALF [AGNvS94] and Coq [BBT96]) contains many varied arguments
about the necessity for machine support when performing formal proofs. The issue of con-
fidence underlies most of these: confidence that the theorem really is a consequence of the
axioms and rules of the logic, particularly confidence that one has not missed vital cases in
an induction or case-splitting step, and that any definitions are acceptable within the logic.
These arguments are no less valid for the study of the logics themselves as for working within
these logics. In fact, they may carry more weight. If the modelling power of a logical system
depends on, for example, the confluence of its type inference algorithm, then we require
assurance that the said algorithm really has that property. Such proofs tend to be long and
complex, requiring inductions and case analyses involving a large number of variations on
a theme. The phrases “similarly” and “obviously” are very common in such work. It is
unusual, though not unknown, that the “similar” proof method in these cases does apply.
Consider the following, however: two constructions may appear almost identical, and there-
fore proofs about the properties may require the same steps. If an error has been made in
some related definitions then what is true for one may not hold for the “similar” case. Proof
is an interactive process, which leads to a deeper understanding of the underlying theory,
as well as a mechanical verification of facts. Errors in the formulation, or subtle differences

leading to divergent proof requirements, may be missed in the standard informal approach.

Until recently, the machine environments available were not at all suitable to the demands of
formal meta-theory. Either the environment simply did not have sufficient logical power to
allow the required proofs to be performed or, more commonly, the amount of work required
to encode the logics and perform meta-theoretic proofs was prohibitive. Formal meta-theory
is an expanding field, however, so we wish to examine some of the environments currently
available to see how easy such work now is, how easy it may become, and what direction

development of environments should take to encourage this important step forward.

CHAPTER 1. INTRODUCTION 3

1.2 Terminology

1.2.1 Sequent Calculus and Natural Deduction

We are interested in two kinds of calculi: sequent calculi and natural deduction calculi
[Gen33, Pra65]. A good introduction to the two kinds of calculi can be found in [TS96, §1.3].
In order to study both kinds in a common framework, we will present natural deduction
calculi in a sequent-style (called the logistical style in [Gen34]). [TS96, §2.1.4] presents a
sequent-style version of natural deduction. The differences between these kinds of calculi can
be seen if we examine the rule for logical conjunction (and), written as A. For sequent-style

natural deduction we might have the following three rules for conjunction:’

T'tF TFF 't FiAFy 't FiAFy
———————= AE
traal N TrRR M TTrRR M
while for sequent calculus we might have the two rules:
'kF, TFF I, F,Fo F F3

TFraarm R TEARER A

The two rules Al and AR are identical, but there are striking differences between the rules
AEq/5 and the rule AL. The primary difference between a natural deduction calculus and a
sequent calculus is that the sequent calculus includes rules which change formulae occurring

in the context (the sets T of formulae).

1.2.2 Proofs, Derivations and Deductions

Since the word proof can become overused when discussing meta-theory, we will adopt the
following convention: proof refers to the proof of a meta-theoretic result; when discussing
object-level proofs, the words derivation or deduction will be used, depending on the type
of logic being investigated. Derivations are proofs within sequent calculi. Deductions are
proofs within natural deduction calculi (even when those calculi are presented in a sequent-

style).

1.2.3 Unfolding

Unfolding is a process which takes a function application such as f(a, b) and replaces it with

the body of the definition of f, with formal parameters replaced by actual parameters. So,

1'Where the F; are meta-variables for formulae, and T' is a meta-variable for sets of formulae.

CHAPTER 1. INTRODUCTION 4

if we have the function plus for natural numbers defined by the equations:

plus(0,n) =45 n
plus(S(m),n) =g4ef S(plus(m,n))

then unfolding the first application of plus in

plus(S(S(0)), plus(S(3), j))

gives

S(plus(S(0), plus(S(2), 7))

1.3 The Requirement for a Meta-Logic

Implementations of logics such as first order intuitionistic logic, classical linear logic etc.,
are coded within the machine environment in a way that allows the user to perform com-
plex derivations/deductions within the logic thus defined. The aim of such work is to prove
complex object-level statements. Investigations into the properties of these logics require
different tools. To perform such investigations, induction is invariably required at the level of
reasoning about derivations/deductions. We wish to be able to define the notion of a deriva-
tion/deduction within the system. Even if the logic we are reasoning about has no need for a
term assignment system representing the derivations/deductions (as it might not if provab-
ility is the only issue of interest), we may want a term assigned to derivations/deductions to
aid reasoning at the meta-level. With first order theories, we are interested in the witnessing
term when proving formulae, but at the meta-level, we only wish to know that appropriate
terms exist, and explicit encodings in a logical framework may complicate the meta-theory

without providing any more confidence in the resulting proofs.

1.4 Overview

In this thesis, we will examine three environments: Isabelle [Pau88], SEQUFEL [Tar93] and
Coq [BB*96]. The first two are found to be unsuited to the work we wish to do. Cog is found
to be adequate although not ideal. Some work was also done in ALF [AGNvS94], but this
was never a fully released system and has now been superseded by a new system HALF.?2 The
methodology of ALF (that of directly editing proof terms for Martin-L6f’s monomorphic
type theory [NPS90]) did not lend itself to work with multiple calculi, particularly with

2The implementation of HALF is an ongoing project that has no official documentation yet, and is not

available outside Chalmers. Some work done in HALF has been published, most notably [CN96].

CHAPTER 1. INTRODUCTION 5

the need for equality reasoning about translated proof terms. The meta-theory we will be
exploring in this formal setting is taken from [DP97a] with background material in [DP96].
The informal meta-theory developed there is closely linked with work by Herbelin in [Her94].
The informal development from [DP97a] is shown in §2. Following this, we will briefly
examine attempts at formalising these examples using Isabelle in §3 and SEQUEL in §4.
85 contains a brief overview of the proof assistant Cog, and discusses some of the choices
made for the formalisations presented in §§6-8. We examine other approaches in §9, briefly
looking at other formalisations of meta-theory with particular attention to the approaches.
In §10 we draw conclusions about the work presented in the thesis and give some indicators
of further possibilities in this area. We briefly examine the extension of the formalisation
to cover the example theorems in the universally quantified implicative fragment of first
order logic. Extension to the full propositional cases would appear to involve little challenge
but would require a fair amount of time to perform the proofs. We also draw conclusions
about the relative merits of de Bruijn indices and the named variable syntax used in §8. We
compare the tools used for the various formalisationsin §§3-8, and indicate the requirements
for tools which would better support further work in formal meta-theory. Finally, in §A we
highlight some of the important definitions of the Cog formalisations and then in §B we give

the full development of the formalisation using de Bruijn indices.

Chapter 2

Permutation of Derivations in

Sequent Calculus

This chapter contains a brief overview of the theory being formalised. A more complete

version can be found in [DP97a].

2.1 Overview

It has long been a piece of logic folklore that two intuitionistic sequent calculus derivations
are really the same if, and only if, they correspond to the same natural deduction. To

paraphrase [GLT89, p.39]:

The translation from sequent calculus into natural deduction is not 1-1: different
proofs of the same sequent, differing only in the order of application of the rules,

have the same translation.

In some sense, we should think of the natural deductions as the true “proof”
objects. The sequent calculus is only a system which enables us to work on these

objects: A F B tells us that we have a deduction of B under the hypotheses A.

[Kleb2] discusses permutability of inferences in sequent calculus without reference to the
corresponding natural deductions, and some of his permutations do not maintain equality
of the image. Similar ideas may also be found in [Min96]. The relationships between
individual sequent calculus derivations can be described using a set of permutations, such

that two sequent calculus derivations are inter-permutable if and only if they correspond to

CHAPTER 2. PERMUTATION OF DERIVATIONS IN SEQUENT CALCULUS 7

the same natural deduction. An obvious extension of this idea is to try to produce a set
of reductions which replace the bi-directional permutations, and indeed to try and find a

confluent set of reductions, which lead to a ‘normal’ form.

But what is ‘normal’ in this sense? In [DP97a] ‘normal’ is defined syntactically in such
a way that the normal derivations are immutable under the composition of the Prawitz
translations into natural deduction and back. The translation from natural deduction to
sequent calculus, unlike the reverse translation [Pra65, Fel89], has not been explicitly defined
in the early literature. Prawitz [Pra65] does, however, describe the steps of this translation
(here called p), which is also described in [TS96]. Prawitz’ translation is from normal
deductions in natural deduction into the sequent calculus. Gentzen [Gen34] described a
translation of non-normal natural deductions in the sequent calculus with cut. In fact, the
translation is naturally formed as the composition of the translations via an intermediate
calculus, the permutation-free sequent calculus due to Herbelin in [Her94] and refined by
Dyckhoff and Pinto in [DP96]. There are therefore two distinct parts to this work. The
new calculus! MJ must be shown to be isomorphic to natural deduction [DP96] and the
reductions must be shown to be normalising with respect to the retraction of LJ onto itself

via MJ.

The permutation reductions in [DP97a] have been shown to be strongly normalising, with
some simple extra constraints on their application, in [Sch]. The informal proof of strong
normalisation of this system appears as a corollary of a result for another calculus which
allows further fine-grained reasoning about the relationship between a derivation in M.J
and its equivalent derivation in LJ. The work in [Sch] has appeared too recently for a

formalisation to be performed and the results included here.

2.2 Three Sequent-Style Calculi

To present a coherent picture of the three systems, a single approach is taken for each. The
systems are defined using a sequent-style notation, although only LJ and MJ are sequent
calculi in the sense of Gentzen’s original version [Gen34], while NJ is a sequent-style calculus
equivalent to natural deduction with assumption classes [Lei79]. All three systems are cut-
free. Cut-elimination for NJ*°“* and LIT°" is well-known, and cut-elimination for MJ ¢4
has been shown in [Her94] (see also [DP98]). NJ also differs from a standard presentation

of the simply-typed A-calculus in its splitting of terms into normal (N) and applicative (A)

! Called MLJ in [DP96] to avoid confusion between Herbelin’s name LJ T in [Her94] and Dyckhoff’s different
calculus LJT in [Dyc92].

CHAPTER 2. PERMUTATION OF DERIVATIONS IN SEQUENT CALCULUS 8

terms. Normal terms (N) have the form:
)\l‘l . l‘n((. (l’ tl) . -tm—l) tm)

where the #; are normal. The sets of derivation/deduction terms of these systems are A and

N for NJ, M and Ms for MJ, and L for LJ, defined as follows:

= AV.N | an(A) M := (V;Ms)| V.M
A = ap(A N) | var(V) Ms == []|M:Ms
L == ur(V)]|app(V,L V.L) |AV.L

where V is the set of variables (z,y,...) and “.” is a binding operator. app(z,{1,y.l5) is the
term of L representing an occurrence of the I'mplies Left rule: the translation into natural

deduction 1is

lapp(@, 11, y.lo)| = [ap(z, [L])/y]|La]

Taking P, Q, R as meta-variables for formulae and T for contexts?, the rules for the three

systems are in table 2.1 on page 11. The judgement forms for each calculus are summarised

here:
Calculus (term) | Judgement Form | Calculus (term) | Judgement Form
NIJ(N) Fp>n:P NI(A) '>a:P
MJ(M) '=>m:P MJ(Ms) r—>ms:P
LJ(L) r—-i:pP

2.3 Relationships Between the Calculi

Following our definition of the three calculi, we define functions which translate deriva-
tion/deduction terms between calculi, and show how the translations interact. These func-
tions (derived from [Gen33, Pra65, DP98]) are shown in table 2.2 on page 12, and vari-
ous theorems regarding their interaction are shown in table 2.3. These theorems include
those showing that translated derivation/deduction terms still derive/deduce the same for-
mula in the same context (theorems N_Admis ('), M_Admis_t('), L_.Admis_p, L_Admis_p,
N_Admis_¢ and M_Admis_¢). The names of the theorems (e.g. @) shown in table 2.3
are derived from the names used in the formalisation described in §7, with names of Greek

letters (e.g. rho) replaced by the correct symbol (p). The diagram below shows how the

CHAPTER 2. PERMUTATION OF DERIVATIONS IN SEQUENT CALCULUS 9

translation functions relate derivations/deductions in the calculi:

MJ.

2.4 Permutations in LJ

Now that we have introduced each of the calculi, and the translations between them, we may
define a relation permuting derivations in LJ. This is the relation shown as = in table 2.4.
>* 1s defined as the reflexive transitive closure of > in the usual way. Once we have defined
the =* relation for untyped terms, we must show the admissibility of sub-term reduction
for the new relation (see table 2.6 on page 16, theorems L_Permn_m, L._Permn_appl and
L_Permn_app2): i.e. that reducibility of a term implies the reducibility of any superterm.
The Weak Normalisation Property of =* follows from the three theorems Norm_Imperm_L,
Norm_L_p and Norm_Red (see table 2.6), as per the specification of weak normalisation for

abstract reduction systems in [Klo92, Definition 2.0.3(2)]. The normal form to which terms

are rewritten is defined informally in table 2.5.

[DP97a] contained a conjecture that by adding certain side-conditions to the system of
reductions the system would be strongly normalising. In [Sch], Schwichtenberg proposed
that only the restriction that I3 must be fully normal wrt w for app_app1 or app_app2 to
be applied, was needed. He then proved strong normalisation for the resulting system as a

corollary of a theorem involving another intermediate calculus.

2.5 Weak Normalisation of Permutations

The aim of this work was originally to define an equivalence class of derivations in LJ each

of which mapped to the same derivation in MJ (and, by the bijection between MJ and

2 Contexts are defined to be functions from a finite set of variables to a set of formulae.

CHAPTER 2. PERMUTATION OF DERIVATIONS IN SEQUENT CALCULUS 10

NI, to the same deduction in NJ). As the informal exploration continued the equivalence
relation was replaced by an oriented reduction relation, and the goal developed into a search
for a strongly normalising reduction relation. As a partial step towards this goal, a weakly
normalising reduction relation was developed: >, as shown above. As mentioned in §2.1,
some minor modifications of the weakly normalising reduction relation leads to a strongly
normalising relation, the proof of which is a corollary of a similar proof in [Sch]. [Sch],
however, introduces yet another calculus which further identifies the steps in translation of
derivations in LJ to derivations in MJ (and so to the equivalent deductions in NJ). We will

ignore the work in [Sch] here, since the formalisation we wish to examine later only covers

the weakly normalising permutation reduction relation and MJ.

2.5.1 The Equivalence of MJ and NJ

[DPY6] (an expanded version of [DP97a]) includes proofs of the equivalence of the full pro-
positional versions of M.J and NJ. These proofs are performed simply using the obvious

mutual induction schemes inferred from the definitions of M, Ms, N and A.

2.5.2 Proof that Permutation Reduction is Weakly Normalising

[DP96] also includes a proof of the theorem that the permutation reduction relation defined
in table 2.4 is weakly normalising. The major work involved in this is the proof of the lemma

called App_Red_M in table 2.6:

app(z, p(ma), y.p(ms)) =* p(sub(z, m1,y, m2))

where p is the translation function from M to L:

pM—L

p(;[]) =aes vr(z)
ple;m:ms) =q4e0p app(z, p(m),z.p(z ; ms)) =z new

p(Az.m) =gep Az.p(m)

Since this is a non-standard recursion (z ; ms is not a sub-term of 2 ; m :: ms in the second
definitional equation) a standard inductive argument will not provide us with an appro-
priate induction hypothesis for conjectures involving p. A measure induction principle is
therefore defined for performing induction on terms in M and Ms, which may be used to

prove conjectures involving p such as App_Red_M above. A similar process is used in the

formalisation described in §7.6.2.

CHAPTER 2. PERMUTATION OF DERIVATIONS IN SEQUENT CALCULUS

Table 2.1: Proof Rules for NJ, MJ, LJ.
NJ

Fz:Pp>n: Q@
o> Azn: (PDQ)

D1

I'>a:P
I'>p> an(a) : P
'>a:(PD>Q) I'>>n:P
I'> ap(a,n):Q

B A-Axiom

AN-Axiom

T,z: P> var(z) :

MJ

Fz:P—Hms: R

Iz:P= (x;ms):

R Choose

Le:P=>m:Q
I'=Xem:(PD>Q)

Meet

Abstract

r—1]:p
F=m:P I'>ms: R

Fesgmiums: R

DS

LJ

L-Axiom

Iz:P —wvr(z): P
z:PoQQ—-hL:P Te:Q,z:PDQ—k:R
Iz:PD>Q— app(z,h,z.b): R

Fae:P—=1:Q
Tl POQ °

R

11

CHAPTER 2. PERMUTATION OF DERIVATIONS IN SEQUENT CALCULUS

Table 2.2: Translation functions for proof terms.

g:M—=N

0(z ; ms) =aey 0'(var(z), ms)
O(Az.m) =407 Az.(0(m))
6 A xMs— N
0'(a,[]) =des an(a)
0'(a,m s ms) =aoy 0(apla,0(m)), ms

Yy:N->M
Y(an(a)) =4y ¥'(a,[])

Y(Az.n) =405 Az.(1h(n))
P AxMs— M

Y (var(z), ms) =gep (x; ms)
Y (ap(a,n), ms) =qer V'(a, (¥(n)) :: ms)
p:M—>L

p(@;[]) =des vr(w)
plx;m:ms) =qep app(x, p(m), z.p(z ; ms)) z new

p(Az.m) =gep Azx.p(m)

¢6: LM

S(vr(2)) =des (2;1[])
(E(app(m,ll,y.h)) =def sub(m,(g(ll),y,(g(lg))

d(Ax.l) =gey Az (1)
sub: VxMxVxM-—-M

sub(z, m,y, (y; ms)) =dep (2 ;m ::subs(x,m,y, ms))

sub(z, m,y, (z; ms)) =qer (z;subs(x, m,y, ms)) 24y

sub(z, m,y, \z.m') =4e0p Az.sub(x, m,y, m') 24y
subs: VxM x V x Ms — Ms

subs(z,m, y,[]) =der []

subs(x, m,y, m’' :: ms) =gop sub(xz,m,y,m’) :: subs(x, m,y, ms)

p:N—-L
p(n) =dey p((n))

¢:L—>N
o(vr(x)) =def an(var(zx))

¢(app(z,l1,y.12)) =des [ap(x,0(l1))/ylo(l2)

d(Axl) =qey Az.0(l)

12

CHAPTER 2.

PERMUTATION OF DERIVATIONS IN SEQUENT CALCULUS

Table 2.3: Relationships between the calculi

0o -

vy

01 -

040"

N_Admis f :

N_Admis ¢ :

M_Admis_ :

M_Admis_y’ :

30 d(p(m)) = m

0p¢: 0(6(1) = 6(1)

'=mR
L Admis 5: T — p(m):R

r—=1I:R
N_Admis ¢ : T pb> ¢(n):R

0(¢' (a, ms)) = 0'(a, ms)

I'=>m:R
I'>>60(m): R

I'>a:P T—F ms:R
T > 6 (a, ms):R

' n:R
I'=9(n):R

'>a:P T ms:R
I'= ¢/(a, ms):R

plp: p(0(m)) = p(m)

¢p: ¢(p(n)) =n

r—=>IR
M_Admis ¢: T = ¢(l):R
o> n:R
L. Admisp: T — p(n)R

13

CHAPTER 2.

PERMUTATION OF DERIVATIONS IN SEQUENT CALCULUS

Table 2.4: Permutations of Derivations in LJ

(im)

(app1)

(app2)

(app_wkn)

(app-app1)

(app_app2)

(app_Im)

/\Tll

Iy

lo

ATZQ

Iy

app(z,l1,y.13)

app(z, 1o, y.13)

Iy = I3
app(a:,ll,y.ZQ) - app(a:,ll,y.lg)

app(x,li,y.ls) = Iy

app(z, U1, y.app(z, 1, w.l3))
-
app(z, app(z, 11, z.la), w.app(z, 1y, y.13))

app(z, 11, y.app(y, 2, w.l3))
-

app(z, 11,y .app(y’, app(z, 11, y.l2), w.app(z, 11, y.13)))

app(x,li,y.Azls) = Az.app(x,li,y.ls)

y&ls

y#z

(yelavyels)

(yelaVyels)

y'new

14

CHAPTER 2. PERMUTATION OF DERIVATIONS IN SEQUENT CALCULUS

Table 2.5: Normal Forms of terms in L wrt >

l'is normal if it is
a variable, or
of the form Az.l where [is normal, or
of the form app(z,11, y.l2)
where
l1 is normal;

l5 is var-normal with respect to the variable y.

lis var-normal wrt z if it is
equal to vr(z), or
of the form app(z,11, y.l2)
where
11 is normal;
l5 is var-normal wrt y;

i ¢11;12~

15

CHAPTER 2. PERMUTATION OF DERIVATIONS IN SEQUENT CALCULUS 16

Table 2.6: Subject Reduction and Weak Normalisation

li = 15 T—=1:R
L_Admis_Perm] : I - 15:R

11 >-* lg F—)lllR

L_Admis_Permn : —=1:R
L =" 1y
L_Permn_lm Azxly =% Az,
L =" 1y
L_Permn_appl app(z,li,y.l3) =* app(z,ls,y.l3)
Iy »* I3
I._Permn_app2 app(z,li,y.2) =* app(z,li,y.13)

Norm Imperm_L : Normal(l) =~ > I
Norm L_p: Normal(p(m))

App_Red M : app(z, p(m1), y.p(m2))
=* p(sub(z, mq,y, ms))

Norm Red : I =* p(¢(1))

Chapter 3

Formalisation in Isabelle

3.1 A Brief Overview of Isabelle

As with most logic software, Isabelle uses an ASCII notation for the non-ASCII symbols of
logic. §3.4 gives a basic introduction to this, but throughout this chapter standard logical

notation will be used for ease of reading.

Isabelle is a highly modular system with many incompatible object logics developed around

a single core: the Pure system.

The Pure system allows for the definition of sorts, subsorts and types. Types may inhabit
the global sort, the primitive sort logic, or any of the defined sorts or subsorts. Polymorphism
is implemented by means of the sorts. Types are simply declared and constructors for the
types defined as functions (there is no distinction between general function definitions and

constructor functions for types).

Isabelle’s meta-logic is implemented in a natural deduction style [Pra65] using the same
symbol (=) as the connective between the premises and conclusion, and the connective
between assumptions and premises. So the rule of implication introduction which is usually

represented in natural deduction as:
(4]

B
ADB

D1

would be represented in Isabelle as

17

CHAPTER 3. FORMALISATION IN ISABELLE 18

(A= B) = (A D B)

This overloading of = 1s a confusing aspect of the language of Isabelle for new users, but
is not a serious problem. The Isabelle meta-logic is not designed to be used directly as a
proof system. Isabelle was designed to allow users to implement the logic in wish they wish
to prove theorems. For our work in formal meta-theory, we must therefore define our own
meta-logic in which proofs about logical systems (such as NJ, MJ LJ) may be performed.
The semantics of our meta-logical connectives will be defined by relating their meaning
to the Isabelle connectives. Various packages supplied with the basic system (such as the
equational reasoning package) in fact require rules of a specific form relating the new Isabelle

object logic connective to an Isabelle meta-level connective.

3.2 An Isabelle Object Logic as a Meta-Logic

Since the Isabelle meta-logic is designed for the implementation of object logics, and not for
direct use as a proof system, a three-level hierarchy must be used. At the bottom there is the
Isabelle meta-logic. Above that is the meta-logic used for reasoning about the systems N.J
and MJ. The meta-logic we implement as an Isabelle object logic is intuitionistic first-order
logic with built-in size induction schemes, simple arithmetic (the natural numbers, addition
and a “less than” relation), and with first order terms. At the top are the systems NJ and

MJ themselves. The different levels are used as shown in the table below

Logic Use
Object Logics NJ and MJ Proof of Theorems
Meta-Logic Proving Properties of Proof Systems
Isabelle Meta-Logic Tactics and Forward Proof

The aim of this work is to provide machine support for the meta-logic. It is not an aim to
make the object logics particularly usable within this system, although they must of course

be correctly defined.

3.2.1 Syntax

We define the sort of terms, which includes the deduction terms for NJ, derivation terms for

MJ, formulae, object-level variables and hypothesis lists. Quantification for the meta-logic

CHAPTER 3. FORMALISATION IN ISABELLE 19

is allowed over terms of specific types.

The usual symbol = is used for the Isabelle meta-logic implication, and any free variables
are implicitly universally quantified within the /sabelle meta-logic. The equality relation
within the Isabelle meta-logic is represented as —. This Isabelle meta-logic equality is
defined with respect to syntactic equality of terms, but it is usual to extend it to include

Isabelle object logic (our meta-logic) equality.

The following symbols are used for the various connectives required for the meta-logic:

Equality of proof terms

Implication

Conjunction

Universal quantification of terms over meta-logical predicates

Derivability in A

Derivability in N

Derivability in M

Y v <>]|

Derivability in Ms'

Since only the implicational fragments of MJ and NJ are dealt with, the only object-level
connective required is implication (D). To illustrate the use of some of the above connectives,

we show the rule of our meta-logic which performs case analysis of a term in M.
((Vz.Vms.(m = (z ; ms)) — P(z;ms)) A (Vz.¥m'.(m = Az.m’) — P(Az.m'))) = P(m)

where P is some predicate abstracted (at the Isabelle meta-level) over objects of type M.

3.2.2 Logical Rules in the Meta-Logic and the Isabelle Meta-Logic

Isabelle supports both forwards and backwards chaining as methods of proof. Backwards
chaining involves the usual method of applying a rule to the current goal and having a set
of sub-goals returned. When supplied with a conjecture G to prove, Isabelle automatically
applies the identity implication rule (G = G) to it, setting the basic goal to G and
initialising the sub-goaler to a single sub-goal of G also. Forward chaining allows a user to
combine rules and axioms to produce a new rule, which may or may not depend on sub-
goals. In this way, the user may build up a complete proof tree applicable to the current
goal. Proofs are seldom performed this way, although completely deterministic tactics may

be built and named in this manner, avoiding the need to program them in ML.?

1'Where F is a Formula or a variable ranging over formulae.

2Non-deterministic tactics still require programming in ML, however.

CHAPTER 3. FORMALISATION IN ISABELLE 20

The rules for the Isabelle meta-logic are not used for proving theorems in general, but are
for writing tactics in ML, and for writing ML tacticals to generate tactics. The useful rules
for proving theorems are those programmed into each object logic, so we need to implement

such rules as part of our meta-logic.

There are certain ML functionals written to help define sets of rules when implementing
object logics. These require the prior provision of object logic (our meta-logic) versions of
common connectives as arguments. The ML functionals then produce rule sets derived from
these. One of the most commonly used sets is the equality reasoning, which takes a set of
equality rules defined using an object level equality, and rules specifying that the object level
implication and equality are derivable from the Isabelle meta-logic implication and equality,
and returns a tactic which will use the provided equalities as a rewriting system and rewrite
to a fixpoint in both the current goals and their local assumptions. There is no attempt to
prevent looping of these rules, and it is up to the programmer of the object logic to ensure

that the equality rules are appropriately ordered to avoid this.

In the implementation of the example, the rules linking the meta-logic and the Isabelle
meta-logic connectives are:

(a=b)= (a=1b)

(P=Q) = (P — Q).

The first of these defines our meta-logic equality relation as an equality relation for the
system. The definition of our equality relation must include (but is not restricted to) rules
showing symmetry, reflexivity and transitivity for the relation. We may then use an ML
functional to provide a simplification tactic performing rewriting using our meta-logic equal-
ity. This simplification includes unfolding of functions such as # which have been defined

using the Isabelle meta-logic equality (=).

The second of these is the definition of our meta-logical implication connective (—). We

are stating that we may derive P — @) if we can derive () by assuming P.

To prove properties of the proof terms, such as theorems 18 and 8’v’, we require an induc-
tion principle. Again, we must define an induction principle manually within the Isabelle
meta-logic for each class of objects upon which we wish to perform induction. This is where
we find the greatest barrier to using Isabelle for this work. Given the complex, one might
almost say unreadable, nature of the Isabelle source text, definition of an induction principle
for complex, mutually defined, inductive objects becomes a non-trivial task. Mistakes are
not easy to spot, nor is one ever completely sure that one’s implementation is absolutely

correct.

CHAPTER 3. FORMALISATION IN ISABELLE 21

For example in order to perform induction proofs for simultaneous proof of ¥f and ¥8'4’,

the following rules had to be encoded into Isabelle:

o A definition of the size function for objects of types M, Ms, Aand N, including objects

formed from the translation functions ¢ and 6.

A principle of induction over the size of an object.

e A number of rules about natural numbers including an ordering function.

Case analyses of objects of type M and Ms.

Many of these are quite complex rules; and the prospect of having to implement them
individually for each type of proof object etc. in each new logic for which meta-theory is
required would be a waste of time, as it would lend little extra confidence in the results for

much extra work.

There is yet more work involved in defining rules to allow the proof of theorems such as
N_Admis_f. Either a new induction principle for proof on the structure or size of derivations
is needed or two versions of each rule in the object logic are needed — an introduction and

elimination version for assumptions and goals involving derivations assumed to be correct.?

Therefore manual implementation of these principles appears to be a dead end in Isabelle. So
we come to the requirement for writing a new top-level which uses Isabelle as a proof engine
and accepts definition of inductive objects and functions, returning appropriate induction
principles, from which we may derive appropriate structural induction schemas. Use of one
of the existing Isabelle object logics would also be possible. The HOL object logic (re-
implementing the HOL theorem prover [GM93]) includes facilities for automatic derivation
of induction principles, but is based on classical higher order logic. Since most proof theory
(even that studying classical logics) is done constructively then using a system such as

Isabelle/HOL to formalise such work would seem inappropriate.

3.3 Isabelle as a Tool

Isabelle has a medium-sized community active in using object logics and in programming
new object logics. There is a smaller community working on improving Isabelle and on

programming more general functions and functionals in ML for use with the system (for

3 A similar problem was encountered when attempting an implementation in the sequent notation of

SEQUEL(see §4).

CHAPTER 3. FORMALISATION IN ISABELLE 22

an overview see [Pau95a]). There is constant development of the system, for instance four
releases of upgrades to the system were made in 1995, these improving the major overhaul
of the system released late in 1994. Further upgrades to the Isabelle-94 system have been

released regularly since 1995.

Very few of the commonly-used large systems are completely stable: A few major and a
number of minor upgrades of Isabelle have been released in the last two years. Work in
the area of machine supported logic is therefore always requiring maintenance. How much
maintenance is needed for each upgrade depends upon both the nature of the upgrade
and the nature of the work undertaken. The Isabelle development team usually produce a
program which can transform the majority of proof scripts into new versions, although some
interaction may be necessary to complete this properly. The scripting capabilities of Isabelle
are adequate to alleviate this problem in the main. Tactics and tacticals may often need
major overhauls to keep up with the latest version, and this is another reason why writing
large amounts of code on top of a specific version of Isabelle does not appear to be a very
attractive method of producing generally useful machine-assistance for meta-theoretic work,

given the regularity of the upgrade releases.

The documentation of the system is very varied, even within the areas of meta-programmer,
programmer and user documentation. Some parts of each type of user’s area of interest are
very well-documented, while some are barely touched and others require one to look at the
original code to see how the system operates. While there is a good introduction to using
the Isabelle system for performing proofs in existing object logics in [Kal94], there is no
similar paper introducing the basics of writing object logics, and one must wade through
the large [Pau94] which includes many internal technicalities mixed in with the necessary

information to start writing an Isabelle object logic.

From a user’s point of view, Isabelle is neither very easy nor very difficult to use. The
interface could be much improved, but that could be said of most freely available academic-
written software, since the interface is the least interesting part of the work for those writing
these complex systems. The proof paradigm is a little odd for someone more used to auto-
mated systems using a sequent-style calculus, and there are certain obvious top-level controls
not present where they might be expected. These problems are being addressed slowly by the
growing community of Isabelle programmers and meta-programmers, and support for users
is currently very good amongst those on the electronic mailing list devoted to it. Whether
these situations will continue as and when the user community grows is difficult to judge.

Given the difficulties involved in programming Isabelle for use as a general tool for machine-

CHAPTER 3. FORMALISATION IN ISABELLE 23

assisted meta-theory,* it would appear to be a poor candidate for further development. This

conclusion also appears in [BC93].

3.4 Isabelle’s ASCII notation

To give a flavour of the Isabelle ASCII notations, here are some of the connectives and
predicates mentioned in §3.2.1 with their ASCIT notation. The Isabelle meta-logic symbols
are provided by the system, whereas the symbols for MJ and NJ and the meta-logic are
defined using the complex Isabelle mixfix system. The system is moderately good at rep-
resenting what is wanted, although the documentation is somewhat obscure, and the type

system leaves the parsing difficult to manage.

Symbol ASCIT

Isabelle Meta-Logic

v n
— ==>
Meta-Logic
— —-—>
A -
Va.P(x) ALL x. P(x)

Object Logic
Iz:P,A—F"Ms:R | $H,z:P,$G — (P) — — > Ms:R

4Especially the problems with implementation of induction schemes.

Chapter 4

Formalisation in SEQUFEL

4.1 Introduction to SEQUEL

SEQUEL [Tar93, Tar97] is a logical framework in the LCF [GMWT79] style. Tt has an ASCII
syntax for representing single-conclusion sequents in the style of a typed lambda calculus.
Rewriting rules may be defined on the terms or types of the sequents. A logic specified by
these sequents is compiled into Common Lisp (with a type checker added).

The propositions of SEQUEL’s notation are expressions of the form w * ¢, so the rule for a

non-term propositional calculus rule AR might be written:

:name And-R

<4> |- P? * thm
<A> |- Q7 * thm
thus

<4> |- (P? & Q7) * thm

If we are encoding a term calculus, however, the natural method of representation would be:

:name And-R

<A> |- t1?7 * P?
<4> |- t27 * Q7
thus

<A> |- (pair t17 t27) * (P? & Q7)

These ASCII representations, although necessary for programming SEQUEL, are more dif-

24

CHAPTER 4. FORMALISATION IN SEQUEL 25

ficult to read than the more usual forms, so for the remainder of this chapter such rules will

be written

F"tllp F"tng
T F pair(ty,ts) 1 (PAQ)

AR.

4.2 Meta-Theory in a SEQUEL Framework

In order to work on the metatheoretic level within a SEQUEL framework, we define the
propositions to be of the form

(der X G D) or (der MS F G D)

where

= A|N|M

nil | (concons D G) | v

t:F

and where F' are formulae, ¢ terms of A, N, M| Ms, and v the object logic contexts. (der
X G D) represents a deduction in NJ (if X is in A or N) or a derivation in MJ (if X is

in M), and (der MS F G D) represents derivations in ML.J where F is the “stoup” formula

which appears under the sequent arrow, e.g. P D @ in the conclusion of the rule:

Fr'=s=m:P ' ms:R

Fesgmums: R

DS

We also define the standard intuitionistic predicate logic connectives, equality between terms
or formulae, unfolding of functional expressions, and conditions pertaining to binding of a
variable to a formulain a context (G). Again these ASCII representations, although necessary
for SEQUFEL, will not be given here. Similar representations are used for the predicate logic

connectives between terms.

We need to implement two proof methods as part of the definition of the meta-logic —
proof by induction on the size of, and case analysis of, proof terms. Case analysis is a simple
matter to encode, but induction is more difficult. We define a general method of proof by

induction, dependent on the definition of a polymorphic function size:

I'EVae:r.(Vy: m.((size(y) < size(x)) D Aly/z]) D Alz/z]) .

I'tVz:7.A

This is in fact a single principle which does not cover mutual definitions. It is possible to

make use of this method for mutual recursive types using the following general approach.

CHAPTER 4. FORMALISATION IN SEQUEL 26

Say we have two predicates Py : A — Prop, P, : B — Prop, where A and B are mutually
recursively defined sets and Py and P; are mutually recursively defined predicates. If we

wish to prove:

Va : A.Py(a)

then we prove:

Vb : B.(Va : A.size(a) < size(b) D Py(a)) D Pi(b)

using induction on the size of b, and then proceed to prove the required theorem by induction

on the size of a.

To illustrate the techniques used in this development, we take the example theorems
N_Admis # and N_Admis_¢'.

After translation,N_Admis_f appears as the conjecture:
FVm:M.(y = m:R)) D ((y > 0(m) : R)
and after applying size induction we are left with the conjectures:

m:M, z:V, ms:Ms, (m=(z;ms)), (y=m:R),
Ind-Hyp F (y b 6(m) : R)
m:M, z:V, m; : M, (m=(Az.my)), (y = m:R),
Ind-Hyp F (y >t> (m) : R)
where Ind-Hyp is the assumption

Ywy : M.(Vws : F.(Yws : Context.((size(w1) < size(m)) D (w3 = wi : w2)))).

In the hypotheses of the first case (m = (z;ms)), we are assuming (y = (z ;ms) : R)."! This

sequent can only be formed in a valid derivation (in MJ) as the conclusion of the rule
r'=M:P I'>Ms: R
F=2M:Ms: R

PDOQ

DS,

so the 4 context in our example must include (for some formula P) the assumption z : P,

and we may also assume (y, z: P> ms : R).?
m:M, x:V, P:F, ms: Ms, (m=(x;ms), (x:P€7y),
(v —5*ms : R), Ind-Hyp F (y D> (2 ; ms) : R)
where P is a new formula. (We may want to delay our choice of P, since it can be any formula,

in which case we would use a place-holder variable and check that any instantiation was a

formula. In this case, we need a new formula here.)

!By substituting (z ; ms) for m in (v = m : R).
2We are effectively inverting an assumption. See §5.1.4 for more details on inversion of assumptions in

Cogq.

CHAPTER 4. FORMALISATION IN SEQUEL 27

Looking to the goal, we can unfold 6(z ; ms) to 6'(var(z), ms). Instantiating the restricted

form of N_Admis_f’ to3:
((y > var(z) : P)A(y 5" ms: R)) D (v o> 0 (var(z), ms) : R))

and adding it as an assumption we get:

m:M, z:V, P:F, ms:Ms, (m=(z;ms)),
(v:Pen), (3 ms: R,
(& var(e) : PYA (v ms : R)) 3 (3 b 0 (var(a), ms) : R))
Ind-Hyp F (y > 0 (var(z), ms) : R)

We use the implication-left rule to proceed to the following goals:

m:M, z:V, P:F, ms:Ms, (m=(z;ms)),

(z:Pe€w), (y 5" ms:R),
Ind-Hyp F (v > var(z) : P),

m:M, z:V, P:F, ms:Ms, (m=(x;ms)),
(z:Pe€9) (y 7 ms:R),
Ind-Hyp F (y 5" ms: R)

The second of these follows immediately. Looking at the first, we see that the goal
(v > var(z) : P)

is of a form that might be discharged via the A-Axiom rule:

A-Axi
T,z: P> var(x): P xiom
provided we can show that z : P € 4. This is one of the hypotheses, so we have proved the

main conjecture for the case of m = (z ; ms).

4.3 Generalisation of the Method

The interesting points of this proof were the uses of the rules of NJ and MJ in the hypotheses
and goal. The uses we made, informally, of these rules can now be formalised below and,
through analogy, appropriate SEQUFEL axioms can now be coded for all the rules of NJ
and MJ.

3Together with an extra premise which can be proved from the inductive hypothesis Ind-Hyp.

CHAPTER 4. FORMALISATION IN SEQUEL 28

'k zip?ey T F vy 7 ms?:r?

I' Fvy=(z; ms?):r? Select-G

I ((z:p?) |y) > m?:q7
I' Fy=(Azm?):(p? Dq7?)

Abstract-G

z:p?€ v,y o msT:r?, T F A

y=(z; ms?):r?, T FA Select-H

P?=(q?27r?), (x:¢?7) |7) = m?:7?, T F A
v=>(am?):p, T FA Abstract-H

| D > nil : p? Meet-G

' y=>m?:p7 T'F v 7 ms?:r?
0 D SG

[by ;50 (m?ms?):r?

(p?=4¢7), T - A
v o onil g7, T FA

Meet-H

P?=@?D>r?),y=>m?:q7, v 5 ms?:s7, [F A
vy 77 (m?ams?)s?, T FA

p?

DS-H

I+ v>a?:p?

I' vy >> (An a?) @ p? AN-Axiom-G

I'F ((z:p?)|v) >>n?:g?

T Fryoo haen?) (7 og) - ¢

y>a?:p?, T F A

y>> (Ana?):p?, I FA AN-Axiom-H

P?=0@?D>r?), (x:q?) |y)D>n?:¥?, T F A S LH
Yo (Azn?):p?, T FA

Lk z:p?€eny
I' vy (Var z) :

7 A-Axiom-G

' vy>a?:(p?7D24q¢?) T F yp>b>n?:p?

I' by (Ap a? n?):¢? > B-G

z:pt€e vy, I' F A

¥y > (Var r) p?, T FA A-Axiom-H

y>a?: (p? D7),y n?:p?, T F A

v> (Apa?n?):q,, T FA - E-H

CHAPTER 4. FORMALISATION IN SEQUEL 29

So for the eight rules of MJ and INJ, we produce sixteen rules for our meta-logic. In general,
if we have a rule in the object system of the form:

a: A, AFb¥Y:B Abrec:C
a:A, AFb:B

Rule,

then we need two rules in the meta-system of the form:
T'F((a:A":(y\a:A) =¥ :B) TF((y\a:A)=>c:C)
I'F(y=9¥:B) F(a: A€
I'F(y=1b:B)

(D=B), (a:A€7), (A =(y\a:A)=>b:B), (W\a:A)=>c:C)FA
(y=a:D), TFHA

Rule-H.

Together with these rules, a specification of how the 4 contexts are handled is required, but

that is a simple mechanical process.

Conversion of the single object-level rule to the more complex meta-level rules might be
automated, although there are some problems with this, most notably with the formalisation
of side-conditions on rules. SEQUFL includes a fast, easy to use method of specifying side-
conditions as guards on the application of rules, which might be very difficult to translate
from object- to meta-level. Using extra sequents — while a slower, more cumbersome method

— might provide the answer to these problems.

We shall see in the later sections on formalisation in Cog, that this process has already
been automated in a very general fashion in proof assistants such as LEGO and Coq. Rule-
G’s definition is part of the standard definition-time analysis of a recursive propositional
function, while Rule-H is an Inversion Lemma on the propositional function (see §5.1.4 for

details of Inversion in Coq).

4.4 Using a Logical Framework for Meta-Theory

Given its basic design, it was always obvious that SEQUFEL could be used for defining
frameworks for meta-theoretic proofs. As with Pure Isabelle however, it is clear that a great
deal of work would be involved in developing a system for performing formal meta-theory
in any logical framework. A more constrained system with a recursive definition mechanism
and, particularly, the automatic production of induction principles, would appear to be
required. A number of such systems are available, and in the next few chapters we examine

various formalisations in the proof assistant Cogq, which fulfills these requirements.

Chapter 5

A Brief Introduction to

Formalisation in Coq

5.1 A Quick Overview of Coq

Coq [BB196] is a proof assistant for the Calculus of Inductive Constructions (CIC') [CH85,
PM93]. The syntax of Cogq is quite readable, providing the reader is aware of the conventions
used to represent non-ASCII symbols in ASCIT text, and the basics of the type theory that

underlies the system. The main points of the notation used in this thesis are noted below.

5.1.1 The Basis of the Type Theory

CIC has two basic Sorts: Prop and Set. Each of these is actually the base of a hierarchy
of universes (Type and Typeset respectively) as in Martin-Lof Type Theory [ML84]. The
hierarchy can be ignored by the user since the system automatically keeps track of universes

above the base cases.

5.1.2 Logical Notation in ASCII

Lambda abstraction is represented (following AUTOMATH [dB80]) by square brackets;

e.g. [x:A]x is the unnamed identity function on a set A.

Universal quantification is represented by round brackets; e.g. symmetry of equality in a set

A would be stated (x,y:4)x=y->y=x.

30

CHAPTER 5. A BRIEF INTRODUCTION TO FORMALISATION IN COQ 31

-> is used both for function typing and to represent logical implication. Conjunction is

represented as /\ and disjunction as \/.

5.1.3 Definitions

Three basic definition mechanisms are used: Inductive for defining objects and famil-
ies of sorts Prop and Set; Recursive Definition and Fixpoint for functions. Thus the

definition® of natural numbers (nat) in Cog is:

Inductive
nat:Set :=
0 : nat |
S : nat->nat.
Mutual Inductive definitions are allowed using a Mutual...with... construct so, for ex-

ample, the mutual definition of even and odd predicates on natural numbers would be:

Mutual Inductive
even: nat->Prop :=
even_0 : (even 0) |
even_s_odd : (n:nat)(odd n)->(even (S n))
with
odd : nat->Prop :=
odd_s_even : (n:nat)(even n)->(odd (S n)).

The addition function may be defined thus:

Recursive Definition
plus:nat->nat->nat :=

agj=>73jl

(s i) j => (S (plus i j)).
Function definition using the Recursive Definition syntax is restricted to (higher order)
primitive recursion. Fixpoint [Gim94]is, as the name suggests, a recursive fixpoint operator
which allows definition of (mutual) recursive functions using case analysis via the Case and
Cases operators. The addition function could therefore also be defined in the following two

ways:

!The number 0 is a reserved token in Cog, so the letter 0 is used.

CHAPTER 5. A BRIEF INTRODUCTION TO FORMALISATION IN COQ 32

Fixpoint
plus [i:nat]:nat->nat :=
[j:nat]<nat>Case i of
J
[i’:nat] (S (plus i’ j))
end.
The construct Case i of deconstructs the term i into its inductive definitional clauses (here
0 and (S i’) for some i’:nat), and any new variables are named. The first clause has no
new variables because i has been decomposed to a ground clause of 0. A recent innovation
(and a more readable syntax) uses the new construct Cases [BB*96, §11], which extends
Case deconstruction to dependent types using a syntax more like the functional program-

ming language ML:

Fixpoint
plus [i:nat]:nat->nat :=
[j:nat]Cases i of
0=>3 |l
(s i’) => (S (plus i’ j))
end.
Recursive Definition is useful since it is integrated into a simplifier tactic (called by the
command Simpl). To allow unfolding of Fixpoint definitions, each line of the definition
must be proved as a named lemma and Rewrite with the name as argument applied. The
Cases construct is a recent innovation in Cog, and is thus not always used in the work presen-
ted in this thesis. Recursive Definition has, technically, been superseded by Fixpoint in
Cog, but 1s still part of the system for backwards compatibility, and because the simplifier
tactic has not yet been updated.

5.1.4 The Minimality Principle and Inversion of Predicates

Inductive definitions in Cogq are interpreted under a Minimality Principle. That is, when
an Inductive definition is made, the object being defined is taken to be the minimal object
satisfying the rules as stated in the definition: i.e. all objects which are a member of the
type (family) must have been constructed by the clauses defining the type (family). Thus, if
the less-than relation on natural numbers is defined as the propositional function (i.e. family

of propositions):

CHAPTER 5. A BRIEF INTRODUCTION TO FORMALISATION IN COQ 33

Inductive
1t : nat->nat->Prop :=
1t_0 : (i:nat)(1t 0 (S i)) |
1t_S : (i, j:nat)(1t i j)->(1t (S i) (S j)).
then all true propositions which are members of this family are built up from a basic fact
(1t_0): (n:nat) (1t O (S n)) and a finite sequence of implications incrementing both ar-

guments (1t_S).

Similarly, if we have a hypothesis that (1t i j), then there are only two possibilities for this:
i=0 /\ j=(S n) or i=(S m) /\ j=(S n) /\ (1t m n)

It would be possible to prove this as an Inversion Lemma, but this is no longer neces-

sary, as there is a tactic to perform such a case analysis on a hypothesis of the current

(sub-)conjecture [BB*96, Ch.8].

5.1.5 Performing Proofs in Cogq

Later we shall be using the Coq representation of sequents to show proofs in progress. To
prove a theorem in Cog we present the system with a type, for which we aim to construct a
term which inhabits that type. Unlike ALF, in which the user directly constructs the term,
construction of the term in Cog is done by the program, behind the scenes. We give the
program commands which further the search for such a term. We shall work through part

of a proof to demonstrate the proof display syntax.

We may envisage a completed proof (in CIC) as a tree of sequents such as:

T'Fty: (O :nat) 0
Tkt :((SO) :nat) l
T 70 (S 0) =nae (5 0)) "I

where the t; are terms of CIC, and T is the current environment (which includes definitions
and local assumptions). Unless we request Coq to print out the ¢;, we shall never see them.
Mostly the user is not concerned with these terms unless they are programming tactics.
In order to prove the fact that 1 = 1 in Cog (the statement above), we present this as a
type. Since 1 is a ground term, we require no quantifiers (as shown). When we present Cog
with such a term as a named or un-named conjecture (via the Lemma or Goal commands), a

partial proof tree is initiated. This partial proof tree contains the initial sequent:

TH17:((S O) =pat (S 0))

where 7 i1s a placeholder for a term. As we progress through the proof, this placeholder

will gradually be refined into a proper term of CIC. Giving the command Apply refl eq,

CHAPTER 5. A BRIEF INTRODUCTION TO FORMALISATION IN COQ 34

which tells Cog to apply the lemma stating reflexivity of equality, the term ¢7 would be
replaced by the term witnessing refl_eq, with a place-holding term for the proof that the
two arguments to equality (which must be syntactically equal) are of the correct type. The
rest of this, very simple, proof is performed completely automatically by the type-checking

engine of Cog, according to the definition of the natural numbers (nat).
We next illustrate the display of current sub-goals. Coq presents sequents such as
tl ZT1,...,tn ZTn l‘to ZT()

as

t1 : T1

tn : Tn

t0 : TO

Say we are trying to prove the following simple theorem about natural numbers:
Vi:N.1< S(0).

In Cogq syntax this is formalised as the type:
(i:nat) (1t i (S 1))
Having entered this into Cog as a conjecture to be proved (under the name 1tiSi) we are

presented with the following display:

1 sub-goal

(i:nat)(1t 1 (S 1))
Initially, there is only a single (sub)goal to be proved. Where we have more than one sub-
goal remaining to be proved (i.e. more than one branch of the proof tree which is not closed
by an axiom) we may have Cogq show us either all the remaining sub-goals or only one at a

time.

We wish to move the universally quantified variable i into the current context with a name
new to the context (since the current context is empty, the name will remain as i). We do

this by matching the conclusion of the universal quantifier introduction rule:?
T,y:TF [y/z]G
vz :T.G
2With a side-condition that y is not free in T', T or G.

CHAPTER 5. A BRIEF INTRODUCTION TO FORMALISATION IN COQ 35

to the sequent above, so that T' matches the empty sequent, z and y match i, T matches

nat and G matches (1t i (S i)). Coq then prints

1 sub-goal

i : nat

(1t i (s 1))

Elimination on the type nat (i.e. induction) then gives us:

2 sub-goals

i : nat

(1t 0 (s 0))

sub-goal 2 is:

(n:nat) (1t n (S n))->(1t (S n) (S (S n)))
Here, Cog is showing us all the remaining sub-goals but only the first is displayed in full:
only the conclusions (consequents) of the other goals are shown. Note that this is simply an
interface matter; we cannot assume that the hypotheses of the second sub-goal are identical

to the fully printed first sub-goal. We may have Coq show us the full sequent for sub-goal 2:

sub-goal 2 is:

i : nat

(n:nat)(1t n (S n))->(1t (S n) (S (S n)))

5.2 Formalisation of Proof Terms in Coq

The central issue in formalising sequent-style calculi with proof terms is the handling of
variable bindings and references. There are two different forms of variable occurrence in proof
terms: bound and free variables. In a sequent, we would expect all variables to be bound,
i.e. there should be no references to objects outside the sequent, but when dealing simply
with proof terms (as we do for the theorem 6 in table 2.3), we may have variables which
reference formulae in an unspecified context rather than occurrences of binding constructors
such as A and app. Specifying a context would clutter the proof unnecessarily, provided that

the theorem being proved is true for all possible contexts.

CHAPTER 5. A BRIEF INTRODUCTION TO FORMALISATION IN COQ 36

This problem of variable binding and references is an old one in computer-aided reasoning.
The problems of renaming, a-conversion and substitution have been dealt with in various
ways. The most common way of dealing with bound variables for formal treatments of
A-calculi in recent years has been nameless dummy variables, also called de Bruijn indices
[dBT72].2 Another, more recent, idea has been to use a higher order abstract syntax to define

equivalence classes of concrete terms to represent the abstract a-convertible terms required

[DFH95, GM96]. A similar but simpler approach is used in [MP93, MP97]

In the following three chapters we will look at three methods of formalising our example
theory in Cog. The first method (§6) uses de Bruijn indices for the bound variables in a term
and an encoding derived from the (object-level) context for free variables. There are some
problems with this approach so §7 shows a formalisation using de Bruijn indices for both
bound and free variables. Finally, in §8 we shall look at a method for using named variables
developed by McKinna and Pollack (with suggestions by Coquand) used in [MP93, MP97].

A deeper discussion of the various approaches is contained in §9.

3In fact, Cog itself uses de Bruijn indices internally together with a persistent naming mechanism for

display and interaction.

Chapter 6

An Initial Formalisation in Coq

This chapter presents a formalisation of the example theory using de Bruijn indices for
bound variables in terms and an encoding of the current context for free variables. It was
initially thought that this would avoid certain problems regarding context manipulation for
operations such as weakening. It turned out that the problems did not exist, and that this
encoding produced problems of its own. The next chapter will present a formalisation built

by amending this one, which uses de Bruijn indices for both bound and free variables.

6.1 De Bruijn Indices

First we need to explain standard de Bruijn indices, before we enter into the variant used

here. This standard de Bruijn approach is used in the next chapter.

We will use the well-known simply-typed A-calculus [Bar84, Appendix A] for this exposition,
since it is slightly simpler than the calculi NJ, MJ and LJ. In the following description of
the simply-typed A-calculus meta-variables P and @ range over Formulae (F'), V is a set of

varilables and the I' are contexts as before.

1=V | AV (t1) F:=o0o|FDF r:=[]| I,V F

Tz:PHt:Q . Tt :(PDQ) THi: P -
FI—)\JJ.t:(PDQ)D TF(t t2): Q = z:P>z: P

Axiom

We will use the last stage of the proof tree in the derivation of the S combinator as an

example later:

z:(PDO(QDR))FAyAz((z 2) (y=z):(PDQ)D(PDR)

FAxdydz.((z2) (y2):(PD(@Q@DR)D(PD>Q)D(PDOR) -

37

CHAPTER 6. AN INITIAL FORMALISATION IN COQ 38

If we take the term for the S combinator and view it as a tree structure, we have:

app app

N LN

X Z Z

<

Now, the names of the bound variables do not matter in this instance, since with the graph-
ical references, all that matters is that a particular leaf (variable occurrence) refers to a

particular node (binding constructor). So, we might view the term S as:

app app

This picture, while valid and useful for human interaction, would be difficult to formalise
directly (higher order abstract syntax is a method of doing this with pointers). What we
may do, therefore, is use the natural numbers to reference binding occurrences, since all we
are interested in when making a reference to a bound variable is which X is being referenced.
There are two ways to do this: either the number refers to the number of binding operators!
between the reference and the operator it references, or the number refers to the number of
binding operators between the root of the syntax tree and the occurrence of the operator
being referenced. The first of these is the more common method of representation, but both

may be useful depending on the application. Using the leaf-to-binder counting, the partial

!In simply typed A-calculus there is only the one binding operator (A). In other systems, there may be

more than one binder [NPS90].

CHAPTER 6. AN INITIAL FORMALISATION IN COQ 39

deduction of the S combinator becomes:

(PD(QDRNFAA((20)(10):(PDQ)D(PDR)
[(JFAAN((20)(10):(PD(@DR)D(PDQ)D(PDR)

DI

where indices which count beyond the local binders reference formulae in the context, which
is represented as a list. For the simply typed A-calculus, the indexing flows seamlessly in
rules such as D I. This is not the case for all sequent-style calculi. Any logic involving
splitting of the context, such as linear logics in particular, will require renaming of indexing

in such rules. This is one of the weaknesses of de Bruijn indices as a general methodology.

For both methods, insertion or deletion of an abstraction in the term (e.g. n-expansion and
B-reduction respectively) require changes to the indices. These changes involve lifting and

dropping. As an example take the §-reduction below:

Az 2y ((Azdw.(z (w y))) 2)

reduces to:

Az Ay w.(z (w y)).
Using leaf-to-binder de Bruijn indices this process becomes:

AX((AA(T(02) 1)

= AAA(2(01))
While performing these calculations, we must ensure that the referencing depths are kept
updated, which is why the z which is originally a ‘1’ becomes a ‘2’ and the y which is
originally a ‘2’ becomes a ‘1’, but w is represented by a ‘0’ which stays constant. For a
deeper examination of the role of lifting and dropping in using de Bruijn indices see §7.2.2
or [Hue94]. Lifting and dropping also come into play when defining the structural rules such
as weakening (also called thinning from a literal translation of the term used in [Gen34]),
where dropping is the process that must be carried out on a term when deleting an unused

formula from the context.

6.2 Formulae, Contexts and Variables

We begin by defining an infinite set of formulae F: which are either atomic (fo, fi,...) or
implicative:
Inductive
F:Set :=
f: nat->F |

Impl : F->F->F.

CHAPTER 6. AN INITIAL FORMALISATION IN COQ 40

In propositional logics, such as the implicative fragments we are studying, the exact form
of the atomic formulae does not matter. For the meta-theoretic proofs we are interested 1n,
we will be working with universally quantified formulae in the theorems. The S-combinator,

for example, is usually represented as
(AD(BDC))D((ADB)D(ADC))

which is parametric in A, B and C'. In our syntax above the S-combinator would be

(Impl (Impl (Impl A (Impl B C)) (Impl A B)) (Impl A C))
Following this, the set of hypothesis lists (or contexts) for sequents can be defined as the set
Hyps:
Inductive
Hyps:Set :=
MT : Hyps |
Add_Hyp : F->Hyps->Hyps.
Since the word context is also used to refer to hypotheses in the current sequent in Cog,
object-logic contexts will be referred to as hypothesis lists. The set V of nameless variables

1s defined as follows:

Inductive
V:Set :=

vfree : Hyps->V |

vbnd : nat->V.
The vbnd constructor is used to denote bound variables within a derivation/deduction term
and so uses natural numbers to refer to occurrences of binding operators, in the usual de
Bruijn technique (see [dB72] for details). The vfree constructor is used to denote free
variables within a derivation/deduction term, i.e. variables which reference a formula in the
hypothesis list. The referencing mechanism consists of using the list before the addition of
a new formula to reference that new formula. This use of a hypothesis list to represent free
variables is more complex than use of the length of the hypothesis list or some other natural
number encoding. Tt helps to specify the hypothesis list in which the derivation/deduction
term has been created, and allows a distinction between free variables which were created
with respect to different hypothesis lists of the same length. For example, during a proof
involving structural rules, the hypothesis list will change in ways other than being extended

by new formulae.

Equality is proved decidable for all these sets, together with decidability of some other
relations, such as occurrence or non-occurrence of a free variable in a term (see §7.2 for

more details in a different but related formalisation).

CHAPTER 6. AN INITIAL FORMALISATION IN COQ 41

Thus, the derivation/deduction terms of the three systems are defined in the following way:

Mutual Inductive

Mutual Inductive

N:Set := M:Set :=
lam : N->N | sc : V->Ms->M |
an : A->N lambda : M->M
with with
A:Set := Ms:Set :=
ap : A->N->A | mnil : Ms |
var : V->A. mcons : M->Ms->Ms.
Inductive
L:Set :=
vr : V->L |

app : V->L->L->L |
Im : L->L.
This formalisation of M and Ms gives the following induction principle:?
(P:M->Prop)
(P0:Ms->Prop)
((v:V)(ms:Ms) (PO ms)->(P (sc v ms)))->
((m:M) (P m)->(P (lambda m)))->
(PO mnil)->
((m:M) (P m)->(ms:Ms) (PO ms)->(PO (mcons m ms)))->
(((@:M) (P m)) /\ ((ms:Ms)(PO ms))).
This is equivalent to the induction scheme:

Ve :V.Y¥ms:Ms.Py(ms) D P(x; ms)
Ve:V.Ym:M.P(m) D P(Az.m)
Py(N1il)

Vm:M.P(m) D Vms:Ms.Py(ms) D Py(m :: ms)
(Vm:M.P(m)) A (Yms:Ms.Py(ms))

6.3 Derivations and Deductions

All the components of a sequent have now been defined, and so the the propositional func-
tions representing derivations/deductions may now be defined. Given the size of such defin-
itions only derivations within MJ are shown here. L_Deriv, N_Deduc and A_Deduc are

similarly defined.

2This is semi-automatically produced. Some simple cut-and-paste and an easy proof is currently required
for induction principles derived from mutual inductive definitions. A macro for automating this should be

included in the next full release of the Cog system.

CHAPTER 6. AN INITIAL FORMALISATION IN COQ 42

Mutual Inductive
M_Deriv : Hyps -> M -> F -> Prop :=
Choose : (h:Hyps)(i:Hyps)(P:F)(ms:Ms)(R:F)
(In_Hyps i P h)->
(Ms_Deriv h P ms R)-—>
(M_Deriv h (sc (vfree i) ms) R) |
Abstract : (h:Hyps)(P:F)(m:M)(Q:F)
“(Occurs_Free_In_M h m)->
(M_Deriv (Add_Hyp P h)
(bnd_to_free_M h m)
Q->
(M_Deriv h (lambda m) (Impl P Q))
with
Ms_Deriv : Hyps -> F -> Ms -> F —> Prop :=
Meet : (h:Hyps)(P:F)(Ms_Deriv h P mnil P) |
Implies_S : (h:Hyps)(m:M)(P:F)(Q:F)(ms:Ms)(R:F)
(M_Deriv h m P)->
(Ms_Deriv h Q@ ms R)->

(Ms_Deriv h (Impl P Q) (mcons m ms) R).

Figure 6.1: Formal Definition of Derivations in MJ

Figure 6.1 shows the Cog definition for derivations in MJ and figure 6.2 (on page 43) shows
the induction scheme semi-automatically produced for induction. The complexity of these
induction principles shows why machine support is desirable for such work, and why a
system such as Cog, with the ability to derive such principles (semi-)automatically, and the

capability to prove such principles sound, is required.

The main point to be noted about M_Deriv is the newness or freshness condition:

“(Occurs_Free_In_ M h m)

which occurs in the Abstract rule. ‘h’ is the free variable used to reference the formula
(P) which is added to the hypothesis list in the premise. The non-occurrence of h as a free
variable in the derivation term m is required to ensure that derivation terms do not contain
variables outside the hypothesis list of the sequent. The same side-condition is required for

similar reasons in [MP93, p.297, rule LDA] (see also §8.2.2).

CHAPTER 6. AN INITIAL FORMALISATION IN COQ

(P: (h:Hyps) (m:M) (f:F) (M_Deriv h m f)->Prop)
(PO: (h:Hyps) (f:F) (m:Ms) (f0:F) (Ms_Deriv h f m £0)->Prop)
((h,i:Hyps) (P1:F) (ms:Ms) (R:F)
(i0: (In_Hyps i P1 h))
(m: (Ms_Deriv h P1 ms R))
(PO h P1 ms R m)->
(P h (sc (vfree i) ms) R (Choose h i P1 ms R i0 m)))->
((h:Hyps) (P1:F) (m:M) (Q:F)
(n:~ (Occurs_Free_In_M h m))
(m0: (M_Deriv (Add_Hyp P1 h) (bnd_to_free_M h m) Q))
(P (Add_Hyp P1 h) (bnd_to_free_M h m) Q m0)->
(P h (lambda m) (Impl P1 Q) (Abstract h P1 m Q n m0)))->
((h:Hyps) (P1:F) (PO h P1 mnil P1 (Meet h P1)))->

((h:Hyps) (m:M) (P1,Q:F) (ms:Ms) (R:F) (m0: (M_Deriv h m P1))
(P hm P1 m0)->
(m1:(Ms_Deriv h Q ms R))
(PO h Q ms R m1)->
(PO h (Impl P1 Q) (mcons m ms) R
(Implies_Sh m P1 Q ms R m0 m1)))->
((h:Hyps) (m:M) (£:F) (m0: (M_Deriv hm £))(P h m £ m0))/\
((h:Hyps) (£:F) (ms:Ms) (£0:F)

(m0: (Ms_Derivh f ms f0))(PO h f ms fO m0)).

Figure 6.2: Induction scheme for derivations in ML.J

6.3.1 Summary

The formal derivation term
(lambda (sc (vbnd 0) (mcons (sc (vfree MT) mnil) mnil)))
in the context of a hypothesis list
(Add_Hyp (£ 0) (Add_Hyp (£ 1) MT))
represents the informal term of MJ
Az (e ((y; 1) = D)
in the context of a hypothesis list
[2: fo, y: f1]

43

CHAPTER 6. AN INITIAL FORMALISATION IN COQ 44

6.4 Conclusions

This hybrid approach of combining named free variables and nameless bound variables ap-
peared at first to be a way of avoiding problems with some of the structural rules. On deeper
examination, it became apparent that there were no real problems. This hybrid approach
requires functions for both lifting/dropping and for the substitution of free variables for
bound variables as for the McKinna and Pollack approach (see figure 8.1 on page 66 in §8).
Since we must prove theorems about the interaction between each new function and each of
these support functions, we are creating more work than necessary by using this approach.
We describe a full formalisation, using only de Bruijn indices, of the example theory from §2
in the next chapter §7 and then some initial work using named variables in §8. This hybrid

approach may have some uses, however, which we will examine in §10.

Chapter 7

A Formalisation in Coq Using

de Bruijn Indices

This chapter presents a formalisation using de Bruijn indices for both the bound and free

variables. Similar formalisations of typed A-calculi appear in [Bar96, NN96].

7.1 Initial Definitions

This section deals with the definitions of the parts of a sequent: the formulae, the context
(represented as a list of formulae) and the derivation/deduction terms, followed by the

definitions of the propositional functions representing M.J derivations.

The set of formulae, F, is defined as before:

Inductive
F:Set :=

form: nat->F |

Impl : F->F->F.
The set of contexts Hyps is defined using syntactic constructions to be an abbreviation for
a list of F(ormulae), using the polymorphic list library provided with Cog. The length of a
list, function length of type (A:Set)(1ist A)->nat, and some of its properties are made
available with this library without the need to re-prove them for a new implementation. The

syntax for Hyps is equivalent to the inductive definition:

45

CHAPTER 7. A FORMALISATION IN COQ USING DE BRUIJN INDICES 46

Inductive
Hyps:Set :=
MT : Hyps |
Add_Hyp : F->Hyps->Hyps.
Len Hyps is defined as (length Hyps).

The set V of nameless variables is defined as an abbreviation for the natural numbers. Note
that the lack of differentiation between free and bound variables makes this much simpler

than before.

Thus, the derivation terms of the three systems are defined in the following way:

Mutual Inductive Mutual Inductive
N:Set := M:Set :=
lam : N->N | sc : V->Ms->M |
an : A->N lambda : M->M
with with
A:Set := Ms:Set :=
ap : A->N->A | mnil : Ms |
var : V->A. mcons : M->Ms->Ms.
Inductive
L:Set :=
vr : V->L |

app : V->L->L->L |

lm : L->L.

Note that these definitions (and therefore also any induction schemes derived) are identical
to those in the previous chapter. The structure of these terms does not change despite
the difference in the definition of the set V. The differences will manifest themselves in the
definitions of functions involving variables, for instance substitution, and in the definitions

of the propositional functions representing derivations in the calculus.

7.2 Decidability of Relations

In order to perform meta-theoretic reasoning about derivations encoded using de Bruijn
indices, we require the decidability of certain propositional functions over the natural num-
bers. In order to prove these, we approach the problem in an indirect way. We will look at
the “less than” function over natural numbers as an example. First, we define “less than”

(1t) as in §5.1.4:

CHAPTER 7. A FORMALISATION IN COQ USING DE BRUIJN INDICES 47

Inductive
1t : nat->nat->Prop :=
1t_0 : (i:nat)(1t 0 (S i)) |
1t_S : (i,j:nat)(1t i j)->(1t (S i) (S j)).

then we define a boolean function 1tb which we will prove is equivalent:

Recursive Definition
1tb : nat->nat->bool :=
0 0 => false |
0 (S j) => true |
(S i) 0 => false |
(s i) (S j) => (1tb i j).

Then we prove the four theorems (i.e. each direction of the bi-implications):
Vi,j :nat.(1t i j) < (1tb 7 j) = true
Vi,j :nat. ~ (1t i j) < (1tb i j) = false.

The decidability of 1t,
Vi, j :nat.(1t i j)V ~ (1t i j),

follows immediately from these theorems.

As mentioned above, this is an indirect approach to proving a theorem which is amenable to
a more direct proof by induction. There is method in this apparent madness, though. Each
of the four theorems above is useful individually. So, using them to prove the decidability

of 1t is simply a bonus.

To show why we require both the propositional and boolean functions for 1t, we must first

look at a polymorphic if function.

7.2.1 Setifdb

We wish to be able to define functions over the sets of derivation/deduction terms and
over contexts. These functions should be easy to reason with and about. To this end, we
define a general notion of If, not contained in the basic library of Cog. In the standard
libraries, IF is defined with type Prop->Prop->Prop->Prop. There is also ifb of type
bool->bool->bool->bool where bool is the standard set {true,false}. What we require
is a complete function using a boolean value as a test and with general inputs and output.

Thus, we define Setifb:

CHAPTER 7. A FORMALISATION IN COQ USING DE BRUIJN INDICES 48

Hypothesis B:Set.
Recursive Definition
Setifb : bool->B->B->B :=
true x y => x
false x y => y.
When we discharge the Hypothesis B, Setifbis defined as the polymorphic if over general

sets, with type (B:Set)bool->B->B->B.

7.2.2 Lifting

Lifting 1s a necessary operation for using de Bruijn indices correctly. An implementation
for standard untyped A-calculus terms can be seen in [Hue94]. Here we will use the stand-
ard substitution function in N and A to illustrate Lift N and Lift_A. Informally, we can

mutually define substitution of an A for a variable in an N or an A:!

[ao/z]Ay.n = Ay.lac/z]n rZy
[ao/z]an(a) = an([ac/z]a)
[ao/x]ap(a,n) = ap([ao/x]a,[a/z]n)
[ao/z]var(y) = war(y) TFyY
lao/x]var(z) = ag
Let us take as an example the following term including a substitution in both named and

nameless variable formats:

Az Ay [var(z) /y]Az.an(Au.an(ap(ap(var(u), an(var(y))), an(var(z)))))

A Jvar(1)/0]A.an(X.an(ap(ap(var(0), an(var(2))), an(var(1)))))

Unfolding the application of substitution once, we get:

Az Ay Az [var(z) /ylan(Au.an(ap(ap(var(u), an(var(y))), an(var(z)))))

A Jvar(2)/1]an(X.an(ap(ap(var(0), an(var(2))), an(var(1)))))

As can be seen, no changes of name were required to move the substitution ‘through’ the
lambda abstraction,? but for the de Bruijn indices, each variable in [var(z)/y] has been
increased by one to take account of the extra levels of abstraction between the variable

occurrence and its ‘parent’ abstraction. Continuing the process through to the end we have

1 We are assuming that the variable names are chosen so as to avoid problems with capturing free variables

in ag.

2This is due to the careful selection of distinct names for all the variables.

CHAPTER 7. A FORMALISATION IN COQ USING DE BRUIJN INDICES 49

the following sequence of terms:

Az Ay Az.an([var(z) /y]Au.an(ap(ap(var(u), an(var(y))), an(var(z)))))
A an([var(2)/1]A.an(ap(ap(var(0), an(var(2))), an(var(1)))))

Az Ay Az.an(Au.Jvar(z)/ylan(ap(ap(var(u), an(var(y))), an(var(z)))))
A XA an(X [var(3)/2]an(ap(ap(var(0), an(var(2))), an(var(1)))))

Az Ay Az.an(Au.an(ap(ap(var(u), an(var(z))), an(var(z)))))

A XA an(X.an(ap(ap(var(0), an(var(3))), an(var(1)))))

The important point to notice here is that the de Bruijn reference variables in the substi-
tution term [var(z)/y] increase by one every time we unfold the application of substitution
through an abstraction operator. In the above example, the only instances of variables
within the term being substituted in (var(0)) are free (within the scope of the term itself).
If this term contains variables bound within the term, for instance ap(var(z), Aw.an(var(w)))
(= ap(var(0), A.an(var(0)))), then we require more care. Each time we unfold past an ab-

straction operator we need to increment the free variables within the term but leave the

bound variables unchanged. This operation is called lifting and is defined thus:

tiAn =aqep A fugnyn
Ti an(a) =4ey an(t; a)
Ti ap(a,n) =4y ap(tia,1in)
1y var(z) =qep if ® < i war(zx) else var(z + 1)

7.2.83 The Usefulness of Boolean Functions

We shall now show the necessity for Setifb, and for the boolean versions of functions such as
1tb and nateqgb (boolean equality for nat). While it is possible to define functions perform-
ing branching on propositional functions (such as the definition of 1ift _rec in [Hue94]) the
use of boolean functions (proved equivalent to the propositional versions) provides greater
clarity, in particular when we wish to consider the various cases involved in comparing two
generically appearing numbers. Below, we show the formal definition of lift for variables

and for derivation terms of LJ:
Recursive Definition
1ift_V : nat->V->V :=

i j => (Setifb V (1tb j i) j (S j)).

CHAPTER 7. A FORMALISATION IN COQ USING DE BRUIJN INDICES 50

Recursive Definition
lift_L : nat->L->L :=
i (vr x) => (vr (1ift_V i x)) |
i (app x 11 12) =>
(app (1ift_V i x) (1ift_L i 11) (1ift_L (S i) 12)) |

i (Im 1) => (Im (1ift_L (S i) 1)).
The separation of 1ift_V from the individual lifting operations for L, A; N, M and Ms
allows us to prove general theorems about the behaviour of lift with regards to other func-
tions operating on variables (such as drop and ezchange below) and use these to show similar
theorems about the lifting operations for derivation/deduction terms generally, without re-

peating the parts of those proofs dealing with variable occurrences.

We also require the inverse function of lift, called drop, which lowers the value of the de
Bruijn indices in a term. This is needed when an abstraction is deleted from a term. (In
particular, we will see that lifting and dropping are precisely the functions needed for certain
sequent structural operations such as weakening.) Dropping () is defined in a very similar
way to lifting, and the following theorems about lifting and dropping hold for all the sets of

derivation/deduction terms:

Vi:nat, t:T. ;1 t =t,
Vi:nat, t : T.i gt DTidit =1,

where T is one of {M, Ms, N, A, L, V}. These theorems have only been proved in the

formalisation where necessary: for V, M and Ms: see pages 154 and 155 in §B.

7.2.4 The Usefulness of Propositional Functions

So, we have explained why we need the boolean version of equality and other 1t, but why
do we also need the propositional versions? The usefulness of the propositional version of
these functions lies in the Inversion tactic described in §5.1.4 . Were we to restrict ourselves
to the boolean functions, we would have to prove inversion theorems for each function.
Defining propositional and boolean functions and showing their equivalence allows us to
use the standard inversion tactics for hypotheses and to use those hypotheses to rewrite
subterms of the goal involving the boolean version in Setifb constructs. Finally, in the case

of nat equality, we wish to be able to use equality hypotheses as rewriting rules thus:

CHAPTER 7. A FORMALISATION IN COQ USING DE BRUIJN INDICES 51

X,y:nat

H: x=y

(P xy)

where P is some propositional term, can be simplified by using H as a rewriting rule to

x:nat

(P x x)
If we had the hypothesis H: (nategb x y) we could not do this without proving the equi-

valence of nategb and = 4.

7.3 Translation Functions

Having defined the derivation/deduction terms and variable adjustment functions, we can
now proceed to the functions translating derivation/deduction terms between the three
systems, as shown in table 2.2. The definitions of the functions translating terms between
NJ and MJ are fairly straightforward, since they are simple primitive recursive definitions,
which do not change the level of abstraction of a variable occurrence with respect to its

binding.

Of more interest are the translations involving LJ. In particular, the definition of j requires
considerable changes in order to be accepted by Cog’s function definition mechanism. If we

transform the definition seen in table 2.2 to use de Bruijn indices, we get the following:

pla;l]) =dep wr(z)
ple;m:ms) =gop app(x, p(m), p(0; to ms))
pAm) =aep A.p(m)

The second recursive call in the right hand side of the second definitional equation is not
primitive recursive: (0; To ms) is not a sub-expression of (z; m :: ms). We may avoid part of

the problem by using a mutual definition such as:

ple;l]) =aes vr(z)
plz;m:ms) =4y app(z,p(m), p'(0, 10 ms))
FOem) Zas Aep(m)
P2 []) =aep vr(z)
P mms) =ay app(a, pm), 70,10 m9))
which is primitive recursive in all but one respect: that of the lifting operation required on

ms in the fifth equation, necessary to retain variable reference consistency. We therefore add

CHAPTER 7. A FORMALISATION IN COQ USING DE BRUIJN INDICES 52

an extra argument to the definition of p’, which tracks the number of lifting operations we
have yet to do. We may also remove the first argument (a V), since only 0 is ever passed as
that argument. The delayed lifts are performed where necessary by 17, which is equivalent

to T repeated n times:

ple;[]) =daer vr(x)

ple;m:ms) =gop app(z,p(m),p'(ms, 1))

p([ln

p(m:msn

i)
)
p(Ae.m) =ap Az.p(m)
) =dey vr(0)
) =des app(0,1% p(m), p'(ms,n + 1))

We now reach the following formal Cog definitions:?

Fixpoint
rhobar [m:M] : L :=
Cases m of
(sc x mnil) => (vr x) |
(sc (mcons m’ ms)) => (app x (rhobar m’) (rhobar’ ms (S 0))) |
(lambda m’) => (1lm (rhobar m’))
end
with
rhobar’ [ms:Ms] : nat->L :=
[n:nat]Cases ms of
mnil => (vr 0) |
(mcons m ms’) =>
(app 0 (lifts_L n O (rhobar m)) (rhobar’ ms’ (S n)))
end.
where Lifts L is the formal version of 17,. This is the form of the definition in the formal-
isation. It is easier Since these definitions are primitive recursive, they are accepted by Cog
without problem. We must now show that this formal rhobar is equivalent to the original

version above. This requires us to prove the three lemmas:

RhoBarl : (x:V)(rhobar (sc x mnil))=(vr x)
RhoBar2 :
(ms:Ms) (x:V) (m:M)
(rhobar (sc x (mcons m ms)))=
(app x (rhobar m) (rhobar (sc 0 (1ift_Ms 0 ms))))

RhoBar3 : (m:M) (rhobar (lambda m))=(1lm (rhobar m))

3The definition is given using the Cases operator for ease of comparison with the informal definition. The

actual formalisation was done using the Case operator and can be seen on page 186 in §B.

CHAPTER 7. A FORMALISATION IN COQ USING DE BRUIJN INDICES 53

which are the formal Coq versions of the first set of definitional equations using de Bruijn
indices shown above. As we shall see in §7.6, proof of RhoBar2 requires stronger induction

methods than the standard ones.

Many lemmas have been proved regarding the interactions between the translation functions
and the appropriate versions of lift and drop: mostly commutation lemmas. In some cases
many variations of the basic lemma are required to take into account comparisons between

variables. All the lemmas proved may be found in §B near pages 154 and 155.

7.4 Derivations and Deductions

All the components of sequents have now been defined, as have a number of strategic reason-
ing aids. Propositional functions representing derivations/deductions may now be defined.

Again, we will only show the definition for derivations within M.J.

Mutual Inductive
M_Deriv : Hyps -> M -> F -> Prop :=
Choose : (h:Hyps)(i:V)(P:F)(ms:Ms)(R:F)
(In_Hyps i P h)->
(Ms_Deriv h P ms R)->
(M_Deriv h (sc i ms) R) |
Abstract :
(h:Hyps) (P:F) (m:M) (Q:F)
(M_Deriv (Add_Hyp P h) m Q)->
(M_Deriv h (lambda m) (Impl P Q))
with
Ms_Deriv : Hyps -> F -> Ms -> F -> Prop :=
Meet : (h:Hyps)(P:F)
(Ms_Deriv h P mnil P) |
Implies_S :
(h:Hyps) (m:M) (P:F)(Q:F) (ms:Ms) (R:F)
(M_Deriv h m P)->
(Ms_Deriv h Q ms R)->
(Ms_Deriv h (Impl P Q) (mcons m ms) R).
The particular point that should be noted is the way in which the de Bruijn indexing works

in the Abstract rule:
(h:Hyps) (P:F) (m:M) (Q:F)
(M_Deriv (Add_Hyp P h) m Q)->
(M_Deriv h (lambda m) (Impl P Q))

CHAPTER 7. A FORMALISATION IN COQ USING DE BRUIJN INDICES 54

Variables in m which reference the initial lambda binder in the conclusion of the rule reference
the free variable P in the premise of the rule. This same system also works for the formal
definitions of N.J and LJ. We can take no credit for this, since it is a general property of the
particular systems we are working with. Other sequent-style calculi do not necessarily have
this property. For instance any linear calculus with context-splitting rules would not share
this useful property. See §10 for some discussion on how we might cope with such problems.

The fact that all three systems share this property makes our work much easier.

7.4.1 Structural Rules

It may be noted that our presentation of the systems does not include any structural rules.
Some structural rules are necessary in the proofs of theorems in table 2.3, specifically those

involving LJ. Again, any proof involving g requires a strong induction principle.

The three structural rules we require, at different points, are Weakening, Strengthening and
FEzchange, as shown below for a generic sequent-style calculus. Exchange is not necessary for
the proofs of theorems in table 2.3, but is essential for some of the proofs about permutation

of derivations of LJ, shown in table 2.6.

FFt:R
Fz:P+Ht:R

x not free in ¢ Weakening

z not free in ¢ Tt R

ra(: Yy Q ARt R
(= Y g) Exchange
z ::

P _
ra(y:Q:: A)Ft:R

This is, of course, a representation using named variables. Considering these rules for use
with a formal implementation using de Bruijn indices, we see that we need to alter the
derivation/deduction term to take account of the change in the context. Careful consid-
eration of Weakening and Strengthening reveals that lifting and dropping exhibit precisely
the functionality that is needed, since all that is happening is that a non-occurring variable
is being added to or deleted from the context. Therefore, all we need to do is increase or
decrease all the variables in the term which refer to a point beyond the change. The required
function for exchange is simply to replace all references to a particular abstraction level with

1ts successor and vice-versa.

CHAPTER 7. A FORMALISATION IN COQ USING DE BRUIJN INDICES 35

7.5 Permutation

Table 2.4 on page 14 shows the permutations in the usual informal syntax. Formalising these
rules was more complex than might be thought. The exact variable namings and renamings
that form an integral part of the reductions are subtle, and it is only when looked at in the
typed case that one can fully decipher the meanings of the reductions and formalise them to
capture the correct translations. Figure 7.1 shows the formalised versions of the interesting

permutations (i.e. the actual permutations, rather than the sub-term permutation rules).

The formalisation of 1_perml_app_app2 highlights the complexity of the process. Figure
7.2 shows the informal version of the typed reduction rule. Only the leaves and root of the
relevant derivation tree fragments are shown since they contain all the information necessary

for the analysis.

Each of the leaves of a tree corresponds to a particular occurrence of a named term (a
variable or a term of L: z, y, ¥/, {1, l2, l3) in the root of that tree. So, for each of the three
different occurrences of the terms {1 and z in the root of the second tree there is a leaf with
1 or x as the principal term. A comparison of the contexts of these leaves with the original
leaf in the first tree shows the differences in the de Bruijn indices for the terms. Thus the
first occurrences of z and I3 are unchanged in the formalisation, the second occurrences are

both lifted once, and the third occurrences are lifted twice.

The most complex variations in the contexts occur for l3. Originally the bindings for vari-
ables are I',y, z.l3. In the permuted derivation the bindings are I, 3, z, y.l3. Since y' does
not appear in l3, but must be accounted for in the referencing to other variables in T', I3
must be lifted by 2 ((8 (S 0))). Also, the occurrences of y and z are switched, so the de
Bruijn references must be Exchanged — exchange is defined only for switching references
to a binding depth and its successor. This may be done without loss of generality, since
any general exchange can be expressed in terms of multiple applications of this pairwise
exchange. Similar analyses give us the lifting, dropping and exchanging requirements for
each permutation as shown in figure 7.1. The admissibility of various structural rules has
been proved in the formalisation for all three systems. While Strengthening, Weakening and
Exchange are all obviously admissible for all three systems, this has only been proved where

it has been required for other results.

CHAPTER 7. A FORMALISATION IN COQ USING DE BRUIJN INDICES 56

Inductive

L_Perml : L->L->Prop :=

1_permil_app_wkn :
(x:V)(11,12:L)
“(Occurs_In_L 0 12)->
(L_Perml (app x 11 12) (drop_L 0 12)) |
1_permil_app_appl :
(x,z:V)(11,12,13:L)
((Dccurs_In_L 0 12)\/(0Occurs_In_L (S 0) 13))->
(Norm’_L 13)->
(L_Perml (app x 11 (app (S z) 12 13))
(app z
(app x 11 12)
(app (1ift_V 0 x)
(1ift_L 0 11)
(L_Exchange 0 13)))) |
1_perml_app_app2 :
(x:V)(11,12,13:L)
((Dccurs_In_L 0 12)\/(0Occurs_In_L (S 0) 13))->
(Norm’_L 13)->
(L_Perml (app x 11 (app 0 12 13))
(app x
11
(app O
(app (1ift_V O x)
(1ift_L 0 11)
(1ift_L (5 0) 12))
(app (1ifts_V (S (S 0)) 0 x)
(1ifts_L (S (S 0)) 0 11)
(L_Exchange 0
(1ift_L (8 (8 0)) 13)))))) |
1_perml_app_lm : (x:V)(11,12:L)
(L_Perml (app x 11 (1m 12))
(Im (app (1ift_V O x)
(1ift_L 0 11)

(L_Exchange 0 12)))).

Figure 7.1: Formalised Permutations (see page 218 in §B)

CHAPTER 7. A FORMALISATION IN COQ USING DE BRUIJN INDICES 57

(z:Py)(y:(PLDPy)) T =Il3:R
(y: (PLDP))uT =iy Py

F—=l:PF
(a::(PoD(P}DPZ)))EF

r — app(x,ll,y.dpp(y,lg, zl3)): R

S
(y:PrDP)u(z:P)u(y:(PADP)) T —=1l3: R

(z:P)u(y :(PLDP))uT =l Py
(z:(PhD(PADP)E(2:P)(y : (PLDPy))T
(y: (PLDPy)) T =y Py
(y :(PLD Py)) =T =1 : Py
(‘E(OD(PlDPZ)))E(y/I(Plez)):ZF
(y :(PLDP))€(y : (PLDPy)) T
F—)llipo
($:(P0 D (P1 DPQ))) el

' — app(z, b1,y .app(y, app(x;ll,y.ZQ), z.app(z,li,y.13))) : R

Side-conditions: y'new and (y € I or y € I3)

Figure 7.2: Proof Tree Fragment for Permutation App_App2

One final point to note about the formal permutations is highlighted in the side-conditions

and the left hand side of 1_permi_app_app1i:

1_permi_app_appl :
(x,z:V)(11,12,13:L)
((0ccurs_In_L 0 12)\/(0ccurs_In_L (S 0) 13))->
(Norm’ _L 13)->
(L_Perml (app x 11 (app (S z) 12 13)) ...)

which formalises:*

app(:n,l],y.app(z,lg,w.lg)) y7£ Z
(app_app1) - (yelaVy€ls)

The interesting point is that the inequality side-condition (y # z) does not appear explicitly
in the formalisation. The use of (S z) (instead of just z) forces this variable to differ from

” in the informal version.

the bound variable 0 which is the translation of the binder “y.
We could use z, and include an explicit side-condition, but the version above allows slightly

cleaner and shorter proofs, and is an obvious use of de Bruijn indexing.

4The extra side-condition of [3 being fully normal with respect to y ((Worm’ L 13)) is an addition due to

Schwichtenberg: see §7.7 for explanation.

CHAPTER 7. A FORMALISATION IN COQ USING DE BRUIJN INDICES 58
7.6 Proof Techniques

In this section we discuss some of the facets of using the formalisation described above to
actually perform proofs in Cog. Some of this focuses on general issues, some on specific

problems with de Bruijn indices, and some on aspects of the Cog environment.

7.6.1 Induction Principles

Induction in Cog, as with most proof assistants based on type theory, is derived from the
standard elimination principle for an inductive definition. So, for instance, from the defini-
tion of nat given in §5.1.3, Cog derives the induction principle:
(P:nat->Prop)
(p 0)->
((n:nat) (P n)->(P (S n)))->
(n:nat)(P n).

7.6.1.1 Inductions on Simple Inductive Sets

Suppose we wish to prove the conjecture about natural numbers from §5.1.5:

(i:nat) (1t i (S 1))

This requires induction over the natural numbers. If we wish to use the standard induc-
tion principle for natural numbers given above, there are various ways to invoke this, all
being operationally equivalent, but each being more or less appropriate under different local
proof conditions. The Cog Induction tactic will attempt to apply the induction scheme
given above by using second-order pattern-matching to find a binding for P (here it binds
to [i:nat] (1t i (S i)). Sometimes the algorithm cannot find the appropriate set of
bindings, at which point we may supply them using the command Apply ... with
Alternatively, we may define a predicate with the appropriate type (i.e. nat->Prop) which
has the appropriate functional definition, at which point the algorithm should be able to cor-
rectly identify the bindings. When performing proofs involving mutually inductively defined
sets (e.g. M and Ms) we have used this method of defining a predicate.

If we wish to use a non-standard induction principle (such as strong mathematical induction
as shown in §7.6.2), we may not use the Induction tactic, which automatically uses the

standard principle, but we may apply the principle to the conjecture (either directly or via

a defined predicate to supply the bindings).

CHAPTER 7. A FORMALISATION IN COQ USING DE BRUIJN INDICES 59

7.6.1.2 Induction for More Complex Sets

When we have families of propositions such as L Deriv:

Inductive

L_Deriv : Hyps -> L -> F => Prop :=

L_Axiom :
(h:Hyps) (i:V) (P:F)
(In_Hyps i P h)->
(L_Deriv h (vr i) P) |
Implies_L :
(h:Hyps) (i:V)(P:F)(Q:F)(11:L) (12:L) (R:F)
(In_Hyps i (Impl P Q) h)->
(L_Deriv h 11 P)->
(L_Deriv (Add_Hyp Q h) 12 R)->
(L_Deriv h (app i 11 12) R) |
Implies_R :

(h:Hyps)(P:F)(1:L)(Q:F)
(L_Deriv (Add_Hyp P h) 1 Q)->
(L_Deriv h (1m 1) (Impl P Q)).

there are two ways in which we may approach induction proofs involving such families.

7.6.1.3 Direct Induction over Families

Firstly, we may use induction directly on the family, for which we must supply bindings,
since the algorithm cannot solve the second-order matching problem in these cases. So, we

might define a predicate with type:

(h:Hyps)(1:L)(£f:F)(L_Deriv h 1 f)->Prop
and apply our induction principle derived from the above family. This method is used in
the formalisation when proving theorem L_Admis_Weaken (the admissibility of weakening in

LJ). We define the function 1_admis_weaken (see page 194 in §B):

Definition 1_admis_weaken :
(h:Hyps)(1:L)(P:F)(L_Deriv h 1 P)->Prop :=
[h:Hyps][1:L]1[P:F][D:(L_Deriv h 1 P)]
(j:nat)(Q:F)
(1t j (S (Len_Hyps h)))->
(L_Deriv (Weaken_Hyps j Q h) (lift_L j 1) P).

and then proceed to prove:

CHAPTER 7. A FORMALISATION IN COQ USING DE BRUIJN INDICES 60

Lemma I_admis_weaken :

(h:Hyps) (1:L)(P:F)(D:(L_Deriv h 1 P))

(1_admis_weaken h 1 P D).
by applying the induction principle derived from the definition of L_Deriv. The actual
theorem L_Admis_Weaken follows simply from L_admis_weaken by unfolding the definition

of 1_admis_weaken.

7.6.1.4 Induction with Inversion

Some families are defined so that one of the arguments (here the argument of type L) is
composed in a tight correspondence with the formation of the family. In this case, we might
also perform induction on this term and then use inversion (see §5.1.4) on the hypotheses
involving the family to gain the correct induction hypotheses. When defining judgements
for a deductive system with a term calculus, this should always be possible, since the de-
rivation/deduction terms are designed to represent the derivations/deductions, and should

therefore have an appropriate correspondence.

In general, we would use induction directly on the family. We shall see in the next sec-
tion that when using strong induction methods, we will wish to use this second method of

‘inducting on the derivation/deduction term then inverting the judgement hypotheses’.

7.6.2 Strong Induction Principles

As mentioned in §7.3, proofs of theorems involving p require a different induction principle
from the automatically generated ‘standard’ principle inferred from the definition of M and
Ms. This standard principle is, basically, an immediate sub-term induction. That is, we
assume that all the immediate sub-terms of some term have a property and then prove that
the term itself has this property. For mutually defined sets, we have a slight variation on this
theme in that we have two properties (usually mutually defined via a recursion similar to
the original mutual set recursive definition). Performing the obvious eliminations we obtain
induction hypotheses assuming the property appropriate to the type of each subterm. A
stronger induction principle may be needed, such as with natural numbers needing strong

mathematical induction:
VP: (N — Prop).(Vj:N.(Vi:N.i < j D P(i)) D P(j)) D Vn:N.P(n).

Coq includes a library to ease production and proof of this principle (the well-founded

library). Unfortunately, at present this does not cover mutually defined sets. Tt is therefore

CHAPTER 7. A FORMALISATION IN COQ USING DE BRUIJN INDICES 61

necessary to prove strong induction principles for mutually defined sets directly.®

The definition of g in [DP97a] requires some justification of its admissibility as a total
function, since the recursion is non-standard. This justification takes the form of a measure
function on M and Ms which equates to the height of a derivation: i.e. the length of the

longest branch of the derivation tree.

height(x ; ms) =gy 1+ height(ms)
height(Ax.m) =g4c5 1+ height(m)

height([] =dgey 0

)
) =dey 1+ maz(height(m), height(ms))

height(m :: ms))
This definition is easily translated into the formal Cog syntax. We prove various theorems
about the height of terms, such as the fact that lifting or dropping of a derivation/deduction

term do not alter its height. We also prove the following induction principle, allowing us to

perform induction on the height of a derivation in M.J:

(P:M->Prop)
(PO :Ms—>Prop)
((m:M)
((m1:M) (1t (Height_M m1) (Height_M m))->(P ml))
/\((ms1:Ms) (1t (Height_Ms ms1) (Height_M m))->(PO msi))->
(P m))->
((ms:Ms)
((ms1:Ms) (1t (Height_Ms ms1) (Height_Ms ms))->(PO ms1))
/\N((m1:M) (1t (Height_M m1) (Height_Ms ms))->(P ml))->
(PO ms))->
((m:M) (P m))/\((ms:Ms) (PO ms))
where Height M and Height Ms are the formal functions calculating the height of a derivation
term (and therefore a derivation) in MJ. This induction method is used by applying it first,

and then performing non-inductive elimination (i.e. case-analysis) on the m and ms.

So, we have an induction principle which we may use to prove theorems involving g about
the derivation terms. If we wish to apply this strong induction principle to theorems about
derivations involving g, then we need to use the ‘induction on derivation/deduction term

then inversion of the judgement hypotheses’ method described in §7.6.1.2 above.

5 An extension should appear in the next full release of the Cog system.

CHAPTER 7. A FORMALISATION IN COQ USING DE BRUILJIN INDICES 62
7.7 Summary and Conclusions

In this chapter we have reviewed a formalisation of the theory from §2 in Cog using de
Bruijn’s nameless dummy variables. The formalisation completes the proof of weak nor-
malisation for permutation reduction in the implicational fragment of propositional logic.
Proofs of the same conjectures for full propositional logic are unlikely to require more com-
plex methods, although such proofs would be long and tedious. Some automation of the
procedures would therefore be useful. The Cog tactic Auto, when given appropriate Hints as
to which lemmas to apply, produces some automation, particularly for simple linear arith-
metic problems arising from de Bruijn index manipulation. However, there is a definite
boundary, beyond which the Auto tactic is not designed to work, which is in the search for
appropriate bindings in lemmas with variables which appear in the premises but which do
not appear in the conclusion. Auto will not find such bindings, even if exact matches to the
premises are found in the current context. Other than writing tactics designed to automate
the few linear arithmetic problems not solved by Auto (such as those requiring complex
transitive arguments), automation of the proof procedures needed for the work presented
here would appear very difficult. The method of interactive proof exhibits a strong similarity
to the automated methods of rippling [BSt93] and relational rippling [BL95]. §10 examines

this relationship in some more detail.

Initial work on the permutability theorems Norm Imperm_L and Norm_Red was performed
using a formalisation of the original version of the permutations shown in table 2.6. Fol-
lowing the proof of strong normalisation for the system of reductions by Schwichtenberg in
[Sch], weak normalisation was proved using the conditional variants for which strong norm-
alisation holds. Very little work was required to re-do these proofs with the extra conditions,

indicating the robustness of Cog’s proof scripting mechanisms.

While the approach was successful, there are obvious problems remaining with the de Bruijn
indices approach. The lifting and dropping of variable referencing, and the lack of names in
itself, divorces the formalisation of the theory from the usual informal approach. Given that
one of the aims of such formalisation is to increase our confidence in those informal results,
the gap between the formal and informal syntaxes of the object systems is unfortunate.
In the next chapter we examine a methodology proposed by McKinna and Pollack (with
some suggestions by Coquand), laid out in some detail in [MP97], and its application to the

example problem in Cogq.

Chapter 8

A Formalisation in Coq Using

Named Variables

8.1 Background of the Coquand-McKinna-Pollack Ap-

proach

McKinna and Pollack have been involved in formalising a substantial theory regarding Pure
Type Systems (PTS) for a number of years. They have published papers showing the results
[MP93, vBIMR94, Pol94], and recently submitted [MP97], which contains a more abstract
view of their approach. Their work represents a very large development of a single abstract
system (one which includes the Calculus of Constructions [CH85], a fragment of CIC, as
a specific example). Their work is done in LEGO [LP92, Pol94], a proof assistant which
can be instantiated to use a number of type theories, including The Fztended Calculus of

Constructions [Luo94], which is very similar to CIC and it is this instantiation that McKinna

and Pollack use.

The Coquand-McKinna-Pollack (CMP) method represents a rejection of de Bruijn indices
as counter-intuitive. When we are performing informal proofs about typed A-calculi, we do
not think of the A terms as de Bruijn terms, we think of them as terms with named variables
which have a-conversion built in. We recognise the equivalence of, for example, Az.z and
Ay.y with little effort. Definitions are all made involving named variables, and lifting and
dropping are nowhere in our minds. Since the only approach allowing named variables
known when their work started (see §9.6 on higher order abstract syntax) did not allow

proofs by induction, McKinna and Pollack, with some suggestions by Coquand, developed

63

CHAPTER 8. A FORMALISATION IN COQ USING NAMED VARIABLES 64

their method for using named variables in a way independent of the particular calculus.

At the core of their approach is the distinction between wvariables and parameters: bound
and free variables. The idea of distinguishing between these two sets is contained in [Gen34,
Pra65] amongst others. Using this distinction, the CMP approach is described by McKinna
[McK96] as “first order abstract syntax for terms with (restricted) higher order abstract
syntax for judgements”. The novel part of their approach involves the use of two different,
but provably equivalent, formal judgements for each informal judgement in which we are
interested. The equivalence of the two judgements allows us to derive stronger induction

principles for the formal judgement we wish to use in proofs.

8.2 NJ Formalised with Named Abstract Syntax

8.2.1 First Order Abstract Syntax for Terms

Consider the informal definition of NJ:

N

AV.N | an(A)

A

ap(A,N) | var(V)

NJ

Fz:Pob>n:Q
o> Azn: (PDQ)

D1

I'>a: P .
I'>> an(a) : P AN-Axiom

'>ba:(PDQ) I'>>a:P
' ap(a,n):Q
PA—AXlom

DE

T z: P> var(z):

and the role of the free and bound variables. As an argument to var we must be able to
distinguish between variables which reference a A binder (bound variables) and those which
reference a formulain the local context (free variables). The properties we wish our variables

to have are:

e Decidable equality.

e Availability of new variables when compared to a finite set of existing variables.

CHAPTER 8. A FORMALISATION IN COQ USING NAMED VARIABLES 65

For the purpose of formalising NJ, MJ and LJ, we require only a single set of names, Vars

with the following assumed properties:

Var : Set

New_Var : (list Var)->Var

New_New_Var : (1:(list Var)) (In Var (New_Var 1) 1).

i.e. that Var is a CIC set, and that there is an operator (New_Var) which, when given a list
of Vars will return a new Var which is not in the given list (New_New_Var). We assume that
there is a boolean equality function for Var, which is equivalent to propositional equality, as
shown for the natural numbers in §7.2. These assumptions allow us to show decidability of
propositional equality for Var. We also include the definition of Setifb as shown in §7.2.1.

We then define a set V which distinguishes between bound and free variables thus:

Inductive V : Set :=
BV : Var->V |
FV : Var->V.

These two sets, Var and V, are used in the definition of formal deduction terms for NJ:

Mutual Inductive
N:Set :=
lam : Var->N->N |
an : A->N
with
A:Set :=
ap : A->N->A |
var : V->A.
This definition does not account for a-convertible terms in the same way that de Bruijn

indices do. For example we wish to identify the two terms

(lam x (an (var (BV x))))

and

(lam y (an (var (BV y))))

(i.e. Az.z and Ay.y) as equal. We must define an equality predicate which captures this
notion. We shall show the formal definition of such a predicate in the next section 8.2.2, but
first we require a support function which substitutes a free variable (constructed with FV)
for a bound variable (constructed with BV) in a term. Figure 8.1 shows the formal definition
of such functions for sets V, N and A. As is often the case with Fixpoint definitions, we
define a secondary function using Fixpoint and then a non-recursive primary version with

the arguments in an order appropriate for human reading. (BTF stands for Bound To Free.)

CHAPTER 8. A FORMALISATION IN COQ USING NAMED VARIABLES

Recursive Definition
VBTF : Var->Var->V->V :=
x y (BV z) => (Setifb V (Varegb x z) (FV y) (BV z)) |
xy (FV z) => (FV z).

Fixpoint
NBTF1 [n:N]: Var->Var->N :=
[b,f:Var]Cases n of
(lam x n’) =>
(Setifb N (Varegb x b)
(lam x n’)
(1am x (NBTF1 n’ b £))) |
(an a) => (an (ABTF1 a b £))
end with
ABTF1 [a:A]: Var->Var->4 :=
[b,f:Var]Cases a of
(ap a’ n) => (ap (ABTF1 a’ b f) (NBTFi n b f)) |
(var x) => (var (VBTF b f x))

end.

Recursive Definition
NBTF : Var->Var->N->N :=
bfn=>(NBTF1 nb £f).

Recursive Definition

ABTF : Var->Var->A->A :=

b f a => (ABTF1 a b f).

Figure 8.1: Replacing Bound Variables with Free Variables

66

CHAPTER 8. A FORMALISATION IN COQ USING NAMED VARIABLES 67

8.2.2 (Restricted) Higher Order Abstract Syntax for Judgements

We wish to define an equality predicate which we will use instead of the syntactic equality
of Cog where necessary. There are a number of ways of formalising the predicate, but the
CMP approach requires two forms: Neq and Neq’, as shown in §A.2 on pages 111 and 112
respectively. These definitions are almost identical. The difference is in the treatment of the

lam constructor (as might be expected).

Mutual Inductive
Neq : N->N->Prop :=
lameq :
(x,y,f:Var)(n1,n2:N)
“(Free_In_N f ni1)->
“(Free_In_N f n2)->

(Neq (NBTF x f ni1) (NBTF y f n2))->
(Neq (lam x ni1) (lam y n2)) |

Mutual Inductive
Neq’ : N->N->Prop :=
lameq’
(x,y:Var)(n1,n2:N)
((f:Var)~(Free_In_N f n1)->
~“(Free_In_N f n2)->

(Neq’ (NBTF x f ni1) (NBTF y f n2)))->
(Neq’ (lam x n1) (lam y n2)) |

The method of showing a-conversion is fairly straightforward: every time a binding con-
structor (lam being the only one for N and A) is met while recursing through the terms, the
variables being bound are replaced in both terms by a single common free variable which
did not previously occur in the terms. When we reach variable occurrences (with the Var
constructor) we expect them to be the same free variable (i.e. the same Var with constructor
FV). This only works with terms which have no hanging bound variable occurrences (bound

variables which appear as (Var (BV x)) for which no binder lam x can be found further

CHAPTER 8. A FORMALISATION IN COQ USING NAMED VARIABLES 68

up the parse tree of the term). The two variants of this method require (for Neq) that the
property holds for all (new) free variables when we recurse down through lam, and (for Neq’)

that there exists at least one (new) free variable for which the property holds.

When we come to use the a-conversion equality relation, such as proving that Neq is trans-
itive, we would like to have the induction hypotheses from the scheme generated by Neq’.
When we wish to recurse through a lam occurrence, however, we would like to apply lameq.
The heart of the CMP approach is that for each judgement we wish to formalise (including
those formalising derivations/deductions) we define variants such as those shown above. A
particular method (detailed in [MP97]) allows one to prove the equivalence of any two such
specific judgements (though each proof must be performed separately, as there does not
appear to be a general higher order statement of the property that can be usefully proved
and then applied). Once the bi-implication showing equivalence of the two judgement forms
has been proved, a fairly simple proof can be done for the required induction scheme (see

also page 112 in §A.2:

Lemma N_A_eq_ind’ :
(P:(n,n0:N) (Neq n n0)->Prop)
(PO: (a,20:4) (Aeq a a0)->Prop)
((x,y:Var)(n1,n2:N)
(n:(f:Var)~(Free_In_N f n1)->"(Free_In_N f n2)->
(Neq (NBTF x f ni1) (NBTF y f n2)))
((f:Var)
(n0:~(Free_In_N f n1))
(n3:"(Free_In_N f n2))
(P (NBTF x £ n1) (NBTF y £ n2) (n f n0O n3)))->
(P (lam x n1) (lam y n2) (lameq x y nl n2 n)))->
((al1,a2:4)(a:(Aeq al a2))
(PO al a2 a)->(P (an al) (an a2) (aneq al a2 a)))->
((a1:4)(n1:N)(a2:4)(n2:N)
(a:(keq al a2))
(PO a1 a2 a)->
(n:(Neq n1 n2))
(P n1 n2 n)->
(PO (ap at ni) (ap a2 n2)
(apeq al nl a2 n2 a n)))->
((x:Var) (PO (var (FV x)) (var (FV x)) (vareq x)))->
((n,n0:N)(n1:(Neq n n0))(P n n0 ni))/\
((a,a0:A)(al:(Aeq a a0)) (PO a a0 al)).

CHAPTER 8. A FORMALISATION IN COQ USING NAMED VARIABLES 69

8.2.2.1 The CMP Approach for General Judgements and Predicates

In performing formal meta-theoretic proofs, we deal with formalisations of judgements and
of predicates. Both of these are formalised as predicates in Cog (and LEGO). The CMP
approach is that we use the same procedure for all the predicates in Cog. The method shown
above for formalising equality of deduction terms is equally applicable to the formalisation

of derivations in NJ.

The method above, of defining a universal variant (following the form of Neq, see 67) and
an existential variant (following the form of Neq’, see 67) of the abstract predicate or judge-
ment we are formalising, allows us to ignore bound variables almost entirely, by replacing
them with (new) free variables when we pass beneath binders. Other methods of formalisa-
tion involve inductively defining predicates which use a local context to account for bound
variable names. The experience of McKinna and Pollack [vBJMR94, MP93, MP97] is that
the induction schemes derived from such definitions are often unsuitable for proving the
conjectures being made. The induction schemes derived as described briefly above are more
suitable to the formal development, and the homogeneity of the approach leads to induction
hypotheses being of the appropriate (i.e. usable) form even when dealing with more than

one predicate in a proof.

8.2.3 Complexity of the CMP Approach

The CMP approach requires a large amount of initial work in performing formalisations.
Some can be carried across between developments, but not a great deal. As well as the
BTF functions shown above, functions dealing with renaming free variables to other free
variables (in single and parallel cases) are required in order to prove the necessary equi-
valences between universal and existential variants of complex typing judgements. Length
(aka height) induction is also required for these proofs. Once the initial development has
been carried out, there is still an overhead in extending a formalisation in that lemmas
showing the relationship between new functions and each of the variable handling functions

are required.

8.3 Scope of the Formalisation

The formalisation of the theory from §2 using this method in Cog was limited by the time

available. The formalisation covers only the systems MJ and NJ, and theorems required to

CHAPTER 8. A FORMALISATION IN COQ USING NAMED VARIABLES 70

prove the bijection between them (including ¥6(’'), M_Admis_ (') and N_Admis_§(')). The

primary definitions and lemmas are shown in §A.2.

Chapter 9

Related Work: Tools and

Techniques

9.1 Introduction

This chapter presents an overview of the various approaches and tools used in the area of
formal meta-theory. §9.2 starts us off with nameless dummy variables, also known as de
Bruin indices, as used in §§6 and 7, reviewing some of the many formalisations which have
used that approach. We then describe the work of McKinna and Pollack, using the approach
described in §8, followed by a discussion of the main ideas of higher order abstract syntaz
in §9.6. Finally we examine the attempts to combine higher order abstract syntax with

induction and recursion in §9.7.

9.2 Formalisations Using de Bruijn Indices

9.2.1 Strong Normalization of System F in LEGO

[A1t93] presents a formalization of strong normalization for System F using the LEGO proof
assistant [LP92]. The terms of System F are defined by Altenkirch in the standard de Bruijn
manner. The types of System F are also defined using de Bruijn indices, but here a LEGO
dependent type is used which also encodes the number of free variables in a term (see [Alt93]

for an explanation as to why this is useful for types but unnecessary for terms).

71

CHAPTER 9. RELATED WORK: TOOLS AND TECHNIQUES 72

Altenkirch’s conclusions about the viability of Computer Aided Formal Reasoning is very

up-beat:

However, the fact that formalizing the proof after understanding it was not too
much of an additional effort seems to justify the belief that Computer Aided

Formal Reasoning may serve as a useful tool in mathematical research in future.
However, he does admit that:

However, in completing the proof I observed that in certain places I had to
invest much more work than expected, e.g. proving lemmas about substitution

and weakening.

The ease with which Altenkirch formalised this complex result reflects the usability of the
system (LEGO), and the method (de Bruijn indices), for this particular kind of theory, and
also Altenkirch’s proficiency with the system, method and theory. As with many works of
formal meta-theory, Altenkirch’s proofs are simplified by the fact that he was working with
only a single calculus. His approach is close to the work done by Coquand in ALF [Coq93],
which also uses a semantic argument to prove strong normalization (this time of simply

typed A-calculus) where the terms are encoded using de Bruijn indices.

9.2.2 Verification of Algorithm W: The Monomorphic Case

Algorithm W is the original type inference algorithm presented by Milner in [Mil78], which
forms the basis of the ML type system, and, by extension, the type systems of many of the
strongly typed functional languages currently available. Nazareth and Nipkow in [NN96]
claim the first formal proof of soundness and completeness of algorithm W with respect to the
typing rules. They deal only with the monomorphic case (not including the let construct),
but state that they are unaware of any other formalisations involving algorithm W. [NN96]
presents a proof in Isabelle/ HOL (a re-implementation of the HOL proof assistant using
Isabelle as a framework). The formalisation uses standard de Bruijn indexing techniques
for representing the terms for which algorithm W computes the types. This formalisation
has two effects: firstly, the informal proofs of soundness and completeness of algorithm W,
which follow similar lines, gain credibility; secondly, the importance of the new variable
problem as a non-trivial aspect of the proof is raised, together with a weakening of one of

the conditions on a subsidiary part of the algorithm.

Despite their success with the proof in the monomorphic case, Nazareth and Nipkow believe

CHAPTER 9. RELATED WORK: TOOLS AND TECHNIQUES 73

that extension to “an object language with a let-construct and polymorphic types” is “likely

to be a substantial piece of work”.

9.2.3 Church-Rosser Proofs in Isabelle/ HOL

There have been many formalisations of the Church-Rosser theorem for untyped A-calculus
with f-reduction, e.g. [Hue94, Sha94]. In [Nip96], Nipkow claims the first formalisation
of Church-Rosser for g-n-reduction. Again Nipkow uses the standard de Bruijn indexing
technique in Isabelle/ HOL in order to formalise various aspects of A-calculus. The work
concentrates on abstract notions of the various properties of binary relations, using these
to show the appropriate properties of the various calculi (A-calculus with 8-, - and f-5-

reduction). There is also a high level of automation present. Nipkow’s conclusions are:

It should be obvious from the above comparisons that the field [formal meta-
theory] as a whole is making progress: formalizations have become more natural
and shorter, and the degree of automation is increasing. We are also beginning to
reuse other people’s work (as in the case of Rasmussen’s proofs). Yet each system
still has painful shortcomings, for example arithmetic in the case of Isabelle. More

work on the integration of decision procedures is urgently needed.

9.2.4 Coq in Coq

[Bar96] presents a formalisation of the Calculus of Constructions (CoC') [CH85], a fragment
of CIC. The formalisation, extensively studied in [Bar96], covers strong normalisation and
decidability of type inference for CoC. A Caml Light program is extracted which performs
type inference or type checking for CoC. As a test of the program, the term derived from
a formal proof of Newman’s Lemma in Cog is re-verified by the program, with reasonable
performance. The eventual aim of such work is to formally extract a kernel (type inference
engine and type checker) for CIC, which may form the basis of a new version of Cog, a
bootstrapping method similar to that used for ACL2, the latest of the Boyer-Moore family
of provers [BM79, BM88].

Since Coq uses de Bruijn indices internally, it is unsurprising that Barras also uses them to
produce a kernel for a fragment of its underlying calculus. An approach such as the CMP
method, using an abstract type of variables, would not allow for the direct extraction of a
program. However, by specifying a set of variables which have the appropriate properties a

new kernel using names might be extracted.

CHAPTER 9. RELATED WORK: TOOLS AND TECHNIQUES 74
9.3 A Formal Theory of Pure Type Systems

The methodology of the CMP method is described in §8. Here, we review the work done
by McKinna and Pollack using that method. McKinna and Pollack began by formalising
informal proofs by van Benthem Jutting and others (presented in [vBJ93] and elsewhere
previously), and have since extended the formalisation to cover new ground, including a
formal development of the theory of untyped A-calculus with g-reduction. Their work is
done using LEGO in its instantiation of the Extended Calculus of Constructions [Luo94,
LP92]. This calculus is similar to CIC, the underlying calculus of Cog, although the top-level
syntaxes of the two systems are rather different. Several versions of the basic PTS rules are
presented and various equivalencies are proved. This does not require new machinery, since
the term and type languages are not extended, only the rules for deriving judgements in the
PTS. The complete development is an impressive body of formal proof, although as with
all such developments the only way to understand what is being done is to run portions of
the proof scripts line by line through LEGQO. Even expert users of systems such as LEGO,
Isabelle and Cog cannot run proofs in their heads from the statement of a conjecture and

the proof commands in a script.

9.4 Five Axioms of a-Conversion

Gordon and Melham in [GM96] present a set of axioms for HOL which encode a-conversion
for object languages with binding. The approach shows abstract similarities to the CMP
method, differing mostly owing to the very different styles of the underlying systems HOL
and LEGO. Similarities with the work on restricted higher order abstract syntax (see §§9.6
and 9.7) in [DFH95] are also evident. The primary distinction of their method is the encoding
of an initial set of untyped lambda terms, which may then be differentiated by predicates to
form sets of terms for different languages. The initial presentation in [GM96] includes only
the definition of standard untyped A-calculus terms, but the extension to other systems of

syntax (such as the terms of LJ as presented in §2) would seem simple.

9.5 HOL, ALF, Coq and LEGO

In the previous sections we have briefly reviewed formalisations of proofs of properties of
typed and untyped A-calculi in various systems: HOL, ALF, Cog and LEGO. Since the main

work presented in this thesis has been performed in Cog, it has been presented in more detail

CHAPTER 9. RELATED WORK: TOOLS AND TECHNIQUES 75

than the other systems. Nevertheless, it seems appropriate to set out some of the strengths

of each system.

ALF seems one of the weakest systems available. It was never, however, a properly released
and supported system, and has now been superseded by the still-experimental HALF. No
documentation is available for HALF| although work done with it has been published in
[CN96]. HALF, like ALF, is based on Martin-Lof’s monomorphic type theory. One of the
aims of the new system is to improve interaction and automation, areas where ALF was
quite weak. Until the developers are satisfied enough with HALF to produce a full release,
it is probably inadvisable to undertake large formalisations using HALF.

HOQOL, in its two incarnations as a stand-alone system [GM93] and an Isabelle object lo-
gic [Pau95b], implements a version of classical higher-order logic. Both versions are well
implemented, and fairly mature, systems. They are somewhat divergent in their higher-
level capabilities, particularly in the complex tactics available, though not in the underlying

calculus.

Cogq and LEGQ are based on similar underlying calculi, and their capabilities are therefore
also similar. The group working on Cog in the last few years has been larger, and the system
developed more, although this leads to the corresponding problem of keeping up-to-date with
new system releases. LEGO has developed less, and the core system has remained stable,
allowing more time to be spent on new proofs and less on maintaining old ones. Cog is
probably more accessible to the first-time user, however, with its extensible grammar syntax

and more developed interface.

9.6 Higher Order Abstract Syntax

Higher order abstract syntazr (from here on referred to as HOAS) is one of the central
techniques of the LF approach, embodied particularly in the Elf framework [Pfe91]. The
usage of this method is subtle, and works within logical frameworks such as Elf. Essentially,
we define the language that we wish to reason about using the variables of the framework to
represent the local variables of the language. Thus, we obtain a-conversion and f-reduction
“for free’ from the framework notions of conversion and reduction. However, the method of
defining a set of terms which uses the framework variables as its variables is inadmissible in
current frameworks with inductive definitions, such as Coq [PPM89]. The problem is in the

definition of binding operators, such as X, as might be expected. If we are defining a type

CHAPTER 9. RELATED WORK: TOOLS AND TECHNIQUES 76

term in a framework which allows HOAS, then the type of the A abstractor is:
(term — term) — term.
The part we are interested in is the antecedent of the type:
(term — term).

In [PPMB&9], there is a restriction on recursive occurrences of the type being defined, which
states that the type itself may not occur in a negative position in the antecedent. [PPM8&9,
Definition 2, page 213], which we paraphrase here for the simply typed case, defines negative

occurrences:

x occurs negatively in R if
R =Ry — Ry and
x occurs positively in Ry or
x occurs negatively in Ry
where
z occurs positively in R if
R==zor
R= Ry — Ry and
x occurs negatively in Ry or

x occurs positively in Ry.

Thus, in:

(term — term) — term.

the underlined occurrence of term is a negative occurrence in the antecedent of the type of
the A constructor and thus disallows the inductive definition of term. At present, although
HOAS is a very powerful methodology, it cannot be implemented in a system in which
induction is a core method. Since induction is such a central tool for meta-theory of the
systems we might wish to investigate, HOAS would not currently appear to be a reasonable

candidate for such work.

9.7 Higher Order Abstract Syntax with Induction

There have been several recent investigations into how a system of HOAS might be imple-

mented within a framework allowing induction on the same terms. We will look at three

CHAPTER 9. RELATED WORK: TOOLS AND TECHNIQUES 77

approaches: a restricted version of HOAS developed in Cog in [DFH95], work on implement-
ing primitive recursion within HOAS as a first step towards induction from [DPS96] and

lastly a new framework proposal including HOAS and natural number induction in [MM97].

9.7.1 Restricted Higher Order Abstract Syntax with Induction in

Coq

The main presentation of this work is [DFH95]. Owing to the restrictions presented in the
previous sections from [PPM89], HOAS is not usable in Cog. What is possible is to assume

an abstract set of variables V| and then define our A abstractor as having type:
(V = term) — term.

As with the CMP approach, we must define our own equality predicate on terms. While
we gain a-conversion from the framework (Cog) we do not gain F-reduction for free. There
are also exotic terms included in the definitions of such a set: i.e. terms which satisfy the
definition but which are not within the intended scope. The solution to this problem is
two-fold. All definitions are made with respect to a notion of equivalence classes of terms,
together with a validity requirement which excludes the exotic terms. This definition allows
standard inductive arguments to be applied, although we may no longer define functions
on our terms, and instead must use functional relations, which moves us further from the
informal theories we may wish to formalise. In general, this restricted form of HOAS is too

complex and too far from the informal theories to be a good solution.

9.7.2 HOAS with Primitive Recursion
[DPS96] is a large report detailing

...an important first step towards allowing the methodology of LF to be employed
effectively in systems based on induction principles such as ALF, Cog or Nuprl,

leading to a synthesis of currently incompatible paradigms.

The system presented in that report uses a modal A-calculus to encode a system of primitive
recursive functionals, in a manner inspired by linear logic. As of publication of the report,
only a simply typed version of their theory had been developed and no implementation work
had been done. This represents a significant step forward, and is the basis for ongoing work.
It is unknown how long development will take and swift availability of a combined system

is unlikely.

CHAPTER 9. RELATED WORK: TOOLS AND TECHNIQUES 78

9.7.3 First Order Logic with Definitions and Natural Number In-

duction

[MM97] contains an overview of a proposal (laid out in full in [McD97]) for a system which,
again, might allow HOAS to be combined with a system allowing induction. Here, the
approach is somewhat different from that of Pfenning et al. McDowell and Miller start
with a calculus of partial inductive definitions and add the natural numbers to produce
FOMAN_ By implementing the natural numbers as part of the framework, together with
the elimination principle allowing induction over the naturals, some forms of induction for

other types may be derived via measure functions.

Chapter 10

Conclusions and Further Work

10.1 Frameworks vs. Proof Assistants

Initial work, as shown in §3 and §4, was carried out in logical frameworks. While it was
possible to perform appropriate formalisations in these systems, it was necessary to encode
induction principles as rules of the system. Addition of induction principles to a logic in
order to improve its power is a traditional and valid method. However, the complexity of
the inductions we required undermined our confidence that the principles we were adding
to the system were correct. Since there are systems, (such as Cog and LEGO) which allow
proof of such principles as part of their higher order logic, it would seem obvious that such
systems are more suited to the formalisation of meta-theory. Isabelle and SEQUFEL would
be useful frameworks in which to encode a new system specifically designed for general
meta-theoretic investigations. However, the theoretical basis of such systems (requiring as it
does both induction and some form of higher order abstract syntax) is still an area of active
research. An attempt to produce such a system would almost certainly take longer than was
available for this project and it is doubtful that any progress would have been made with

the motivating problem of formalising the permutation theorem.

10.2 Expansion of the Formalisation of the Permutation

Theorem

As stated in §7.7, the informal proofs of the theorems in §2 have been extended to full

propositional logic [DP97b]. Extension of either of the formalisations in §7 or §8 to full

79

CHAPTER 10. CONCLUSIONS AND FURTHER WORK 80

propositional logic would probably not require methods any more complex than those already
used. The only substantive change to the theory of the implicational fragment in §2 is that
the terms of type Ms are no longer simply lists of terms of type M. Thus, certain proofs
which follow by simple list induction will require full proof by mutual structural or size
induction. Since the list induction proofs are merely employed because they are available
and shorter, rather than because of any doubt as to the viability of the full method, this

should cause no problems.

10.2.1 New Tactics for Cogq

Since extension to full propositional logic would involve some long and tedious proofs, it
would seem sensible to consider programming subject-specific tactics for such a purpose.
Identifying tactics which would be of general enough application to justify the work re-
quired to write them (writing tactics in Cogq is a fairly time-consuming process) is difficult.
Some simple syntactic abbreviations are obvious, and some have been programmed into the
formalisation already. For instance, a common operation is to use the decidability of equality
on variables (for both the CMP method and de Bruijn indices): if we have two variables x
and y in our environment, we wish to perform a case split on x=y\/~ (x=y). When reasoning
about a substitution, for instance, such case splits are often necessary. To perform this case
analysis without any special-purpose tactics, the following commands suffice:

Cut x=y\/ x=y.

Intros c; Case c; Clear c; Intro.

provided c¢ is not the name of a hypothesis in the current context. This process leaves us
with three sequents to prove where we had one before. If we have added the decidability of
equality on variables to the Cogq Hints list, we may have the cut goal x=y\/~x=y automat-

ically proved by Auto using the command:

Cut x=y\/“x=y; Auto; Intros c; Case c; Clear c; Intro.

We can then use the extensible grammar capabilities of Cog to define Vcomp x y to be
equivalent to the above sequence, and the pretty printer to ensure that the same text is
returned as part of a proof script. If there is already a hypothesis with name ¢, however,
we will be reduced to using the full command with a different name. Using the Caml level
of programming tactics, we could extend the Vcomp command to use a new name for the

intermediate hypothesis c.

This is all very simple, and there are a number of cases like it, both in terms of extensions
to the command grammar of Cog and with simple tactics. More complex tactics which

would be useful are more difficult to identify. Certainly one tedious area highlighted by

CHAPTER 10. CONCLUSIONS AND FURTHER WORK 81

the formalisations was the use of the Fixpoint recursive function definition method. The
existing simplifier, which reduces terms to a normal form without unfolding recursive func-
tions further than necessary (see [BB196]), only takes account of functions defined using
the Recursive Definition construct. Since Recursive Definition does not allow mutual
recursive functions, of which there are quite a number in the permutability theory, we must
use Fixpoint and interactively perform rewriting. An extension to the simplifier tactic to
use definitions made via Fixpoint would greatly simplify the proofs in the formalisations

shown.

To go further than this, there is a recognisable pattern in many of the proofs in this form-

alisation. That pattern, to someone well-versed in the technique, is obviously rippling

[BS+93, BLY3).

10.2.2 Rippling

Rippling is the most successful method in the proof planning approach pioneered by Bundy
et al. [BvHHS91]. Currently, rippling is primarily concerned with equality and functional
expressions, but an extension to general relations has been studied, although not integrated

into the main proof planning tool, Clam.

While performing the proofs of the theorems leading up to weak normalisation of the per-
mutation reduction relation, we come across many proofs where the obvious method corres-
ponds extremely well to rippling. The interactive search process that preceded a proof being
found seemed to correspond well to the search mechanism of proof planning (with rippling
as the primary method). Without an implementation of proof planning that interfaces to

Cog, or a formalisation in a system for which proof planning is available, this is difficult to

check without a long and involved by-hand proof planning analysis of the formalisation.

Providing an interface for Clam to Cog and integrating the relational rippling (necessary for
the proofs involving derivations/deductions) technique into Clam would provide a powerful
tool for simplifying the proof process involved in this formalisation. Particularly when faced
with the tedious details of multiple connectives and the many similar sub-proofs entailed,

such a combination would be an invaluable tool.

10.2.3 The Permutability Theorem for First Order Logic

As well as extending the existing weak normalisation result for permutability of inferences

in LJ to full propositional logic, following the informal proofs, there is also the case of

CHAPTER 10. CONCLUSIONS AND FURTHER WORK 82

extension to first order logic. This has not been done in the informal work to date. One of
the main motivations of the formalisation was to explore the possibilities of a formal proof
for the first order case. While extension to full first order logic is the eventual aim, the

universal-implicative fragment would be a useful test case.

In order to represent first order theories in a manner suitable for meta-theoretic reasoning,
we must consider the proof process and its resulting proofs. To re-iterate a statement from
§1.3: “Implementations [in a logical framework] of logics such as first order intuitionistic
logic, classical linear logic etc., are coded within the machine environment in a way that
allows the user to perform complex derivations/deductions within the logic thus defined. The
aim of such work is to prove complex object-level statements (or enumerate their proofs).”
This is particularly the case when we examine first order logic. A useful implementation
of first order logic has “objects” about which theorems are proved. The precise structure
of these “objects” is not our concern when dealing with the meta-theory of first order
logic. We require a definition of them made with broad brush strokes, enabling a particular

implementation the freedom to specify the objects of interest without too many restrictions.

So, we wish to encode unsorted first order logic in a manner which allows us to reason
about its properties without needing to know too much about the objects over which our
quantifications range. We therefore specify a set of expressions in an abstract manner,
allowing us to reason about them without specifying too closely what their meaning is. We
have an infinite set of constants, each of which has a natural number associated with it
which is its arity. Terms (e.g. witnessing terms proving existential statements) can be built
up from these constants in functional expressions and used in our meta-theoretic reasoning,

without any actual semantics attached to these terms save their arity.

10.2.4 Strong Normalisation of Permutation Reduction

As stated in §7.7, [Sch] includes a proof of strong normalisation for a weakened version of
the permutation reduction relation shown in §2 (for which weak normalisation was shown in
the formalisation studied in §7). The proof of SN for permutation reduction is a corollary
of a result involving yet another calculus. Extension of the formalisation (either using de
Bruijn indices or the CMP method) to cover Schwichtenberg’s proof would be interesting,

as would explorations into a direct proof of SN for the weakened permutation reduction

relation using only LJ and M.J.

CHAPTER 10. CONCLUSIONS AND FURTHER WORK 83

10.3 Other Logics, Other Problems

There 1s a large body of informal meta-theory waiting to be formalised. The scope for such
formalisations is limited only by the willingness of people to expend the time and effort to

learn the techniques and become familiar with the tools.

One obvious candidate for formalisation is the permutation of inferences in Linear Logic
[Gir87, GP94]. Linear logic, with its plethora of connectives, provides a rigorous challenge to
the logician working informally. With so many interconnections to consider, the possibilities
of an omission are very high, demanding meticulous care in approaching such work. The
more detail that is spelled out in the informal proofs, the closer such work is to the formal
approach demonstrated in this thesis. There do not appear to have been many attempts at
formalising complex arguments about linear logic, although there may be some in progress
now. The amount of work required to lay the groundwork for such an undertaking both
deters, and delays the exposition of, such work. In particular, the standard de Bruijn
approach does not work well if applied in a naive manner to the meta-theory of linear logic.

See §10.4.1 for an exposition of the problem and some suggestions for a solution.

10.4 De Bruijn Indices, the CMP Method and HOAS:

Conclusions

10.4.1 De Bruijn Indices

I don’t like de Bruijn indices myself.
— N.G. de Bruijn

The above quote appears at the start of [DFH95]. De Bruijn indices are not what we really
want, which is a formal environment in which to do proofs in a way that allows our creativity
free reign while ensuring correctness of our work. De Bruijn indices are a relatively easy way
to ensure some correctness. They are easy to implement and understand. If we make an
error in our initial formalisation of terms with de Bruijn indices it will be easily spotted and
corrected. However, the question of whether our encoding of functions and relations (such
as p or M Deriv) using de Bruijn indices is correct is more difficult. The more complex our
definitions become, and the further away our framework leads us' from our original, informal

intuitions, the less the confidence gained from the formalisation transfers back to our original

! For example compare the original, informal, definition of 7 and the numerous transformed versions until

we get the primitive recursive formal version.

CHAPTER 10. CONCLUSIONS AND FURTHER WORK 84

work. In some cases this is not a problem. For instance, Barras’ work on formalising CoC' in
Coq makes good use of de Bruijn indices: a program derived from a named syntax might be
very much less efficient. The formalisation shown in §7 is sufficiently close to the informal
version to be useful, but the differences still remain and are the cause of some dissatisfaction

with the results.

The really positive aspect of de Bruijn indices is the fact that they are useful now. Within
certain limits they are easy to use and while there is some expansion of the proof require-
ments to handle the arithmetic, much of that can already be automated (in Cog at least).
The overheads of using de Bruijn indices are mostly linear. Every time a new function is
introduced, the relationship with the de Bruijn indexing functions lift and drop must be
derived, but little else is required. In particular, there is little start-up cost that has not
already been done in a number of formalisations, particularly the one shown here. The final
point in favour of de Bruijn indices is that a-convertible terms are equal terms within the
framework used (here Cogq). Any framework such as Cogq or LEGO which includes reason-
able support for equality reasoning and rewriting will be easier to use when dealing with de

Bruijn indices rather than a user-defined a-convertibility relation for equality.

As has been mentioned a number of times, however, not all logics are easy to encode using
de Bruijn indices. Any logic which includes structural changes to the context as part of a
rule will violate the smooth transition from binder-reference to context reference. Take for
instance the right-rule for tensor (®), or any of a number of other multiplicative rules, in
intuitionistic linear logic (ILL) [Gir87]:

TWbFty:A Tyt B
Fl,Fgl_ tST(ta,tb) A®B

®-R

The problems with a de Bruijn index formalisation are caused by the splitting of the context
between the conclusion and the premises. Unlike those of NJ, MJ and LJ, the rules
of ILL contain more complex changes to the context than simple growth by addition of
new formulae. ¢, and ¢, in the premises are not equal to ¢, and ¢, in the conclusion in
terms of variable referencing. The hybrid approach described in §6, which uses de Bruijn
indices for bound variables but a different encoding for free variables, might well prove an
adequate solution, without the overheads involved in using the CMP method. Another
possible solution, retaining use of de Bruijn indices, would be to amend the contexts in
some way to block the use of the same formula in both branches of the proof tree. More
exploration of these methods would be needed to show if they retained enough simplicity to

Jjustify not moving to the CMP method or another form of named variable syntax.

CHAPTER 10. CONCLUSIONS AND FURTHER WORK 85

10.4.2 The CMP Method

The approach of McKinna and Pollack is obviously successful, as shown by the impressive
body of work they have accumulated in their “hobby” time about PT'S and A-calculus. When
working with a large body of proofs involving a single term structure, the initial overheads
of a-conversion, variable replacement etc. pale in comparison to the overall proof effort.
The overhead involved in showing the relationship of each new definition to the variable re-
placement functions is approximately equivalent to the overhead involved in using de Bruijn
indices, where the relationship with lift and drop must be shown for new functions. New
inductive relations also require the equivalence of the existentially and universally quantified
variants as described in §8. So, in total, the CMP method involves more work than using
de Bruijn indices. Why, then, would it be worth using? Well, once the initial formalisation
has been done, further work takes approximately equivalent effort to de Bruijn indices, but
the use of named variables keeps the formalisation closer to the informal definitions. In par-
ticular, function definitions remain closer to the informal definition. Consider the informal,

de Bruijn index and CMP formalisations of sub from table 2.2:

sub: VxMxVxM-—-M

sub(z,m,y, (y; ms)) =ger (x;m:: subs(z, m,y, ms))
sub(z, m,y, (z; ms)) =qep (z;subs(xz, m,y, ms)) z#y

sub(z, m,y, Az.m') =405 Az.sub(z, m,y, m') 24y

Coq formal de Bruijn index lemma representing lines 1 and 2:

Lemma MSVMV1 :
(x:V) (m:M) (y,z:V) (ms:Ms)
(MsubstVMV x m y (sc z ms)) =
(Setifb M (nategqb y z)
(sc x (mcons m (MssubstVMV x m z ms)))
(sc (drop_V y z) (MssubstVMV x m y ms))).

Coq formal CMP approach lemma representing lines 1 and 2:

Lemma MSVMV1 :
(x:V) (m:M) (y,z:Var) (ms:Ms)
(MsubstVMV x m y (sc (BV z) ms)) =
(Setifb M (Varegb y z)
(sc x (mcons m (MssubstVMV x m z ms)))

(sc (BV z) (MssubstVMV x m y ms))).

CHAPTER 10. CONCLUSIONS AND FURTHER WORK 86

Coq formal de Bruijn index lemma representing line 3:

Lemma MSVMV2 : (x:V)(m:M)(m’:M)(y:V)
(MsubstVMV x m y (lambda m’)) =
(lambda (MsubstVMV (1ift_V 0 x) (1ift_M O m) (S y) m’)).

Coq formal CMP approach lemma representing line 3:

Lemma MSVMV2 : (x:V)(m:M)(m’:M)(y,z:Var)
(MsubstVMV x m y (lambda z m’)) =
(Setifb M (Varegb y z)
(lambda z m?’)
(lambda z (MsubstVMV x m y m’))).
The exact Fixpoint definitions, of course, do not matter, as it is these equality lemmas in
which we are interested. The lack of lift and drop in the CMP version makes it easier to
compare the formal and informal versions. (The formalisations of subs exhibit few differences

and are both similar to the informal definition.)

When choosing between de Bruijn indices and the CMP method for a formalisation, the
judgement will always be tricky. The more different term structures involved, the more
initial overhead the CMP method will contain, and the more work will have to be done
using the a-conversion predicate instead of direct syntactic equality. The formalisation
described in §7 did not contain all of the support functions and proofs that must be done
for the method to be applied properly. There is such a plethora of functions and theorems
to be proved when developing a formalisation using the CMP method that few researchers
performing formalisations will be willing to proceed. To enhance the usability of this method
tactics to automate the proof of the many lemmas required, and even to derive their form

would be needed.

10.4.3 HOAS

Higher order abstract syntax appears to be an elegant solution to the problem of variable
handling. Since most frameworks already have a method for handling variables, it seems
an obvious requirement that we should not have to solve the same problem at both levels.
However, the incompatibility between frameworks allowing higher order abstract syntax
and the well-known restrictions on methods for defining inductive structures with strong
elimination principles, currently rules out this approach. As shown in this thesis, induction
plays too large a role to be left to an informal correctness argument: such a method removes

too much of the gain from machine support to leave the formalisation effort worthwhile.

CHAPTER 10. CONCLUSIONS AND FURTHER WORK 87

The work by Miller and McDowell [MM97], and Pfenning et al. [DPS96], though still in
the early stages, holds out promise for a more satisfactory solution in the long term. In
the short term, however, we appear to be left with de Bruijn indices and manually-defined
named syntaxes such as the CMP approach, or a hybrid of both. For those developing such
tools, the following capabilities seem to be required:

e named variables,

e inductive definitions,

e recursive definitions,

e automatic derivation of elimination/induction principles,

e the capability of proving new induction principles sound,

o list, set and multiset handling of contexts

Bibliography

[AGM92]

[A1t93]

[AGNvS94]

[BN94]

[Bar84]

[Bar96]

[BB+96]

[BC93]

[BCY6]

[BGI3]

[BGMY3]

[BM79]

S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum, editors. Handbook of Logic
in Computer Science Vol 2: Computational Structures. Oxford, 1992.

Th. Altenkirch. A formalisation of the strong normalisation proof for System

F in LEGO. Tn [BG93], 13-28.

Th. Altenkirch, V. Gaspes, B. Nordstrom, and B. von Sydow. A User’s Guide
to ALF, 1994. Available from ftp.cs.chalmers.se.

H. Barendregt and T. Nipkow, editors. Types for proofs and programs: in-
ternational workshop TYPES '93: selected papers. Springer-Verlag LNCS 806,
1994.

H. P. Barendregt. The Lambda Calculus — Its Syntar and Semantics. North
Holland, 1984.

B. Barras. Coq en Coq. Technical Report 3026, INRTA, 1996.

B. Barras, S. Boutin, et al. The Cog Proof Assistant Reference Manual (Version
6.1). Technical report, INRTA, 1996. Available on-line with Cog distribution

from ftp.inria.fr.
D. A. Basin and R. L. Constable. Metalogical Frameworks. In [HP93], 1-29.

S. Berardi and M. Coppo, editors. Types for proofs and programs: international
workshop TYPES ’95: selected papers. Springer-Verlag LNCS 1158, 1996.

M. Bezem and J. F. Groote, editors. Typed Lambda Calculus and Applications.
Springer-Verlag LNCS 664, 1993.

E. Borger, Y. Gurevich, and K. Meinke, editors. Computer Science Logic ’93.
Springer-Verlag LNCS 832, 1993.

R. S. Boyer and J. S. Moore. A Computational Logic. Academic Press, 1979.

88

BIBLIOGRAPHY 89

[BMSS]

[Buc85]

[BL95)

[BS+93]

[BVHHS91]

[CN96]

[CA*+86]

[Coq93]

[CHS5]

[dBT72]

[dB80]

[DFHY5)

[DPSY6]

[DNS94]

[Dyc92]

R. S. Boyer and J. S. Moore. A Computational Logic Handbook. Academic
Press, 1988.

B. Buchberger, editor. EUROCAL ’85 Vol. 1. Springer-Verlag LNCS 203, 1985.

A. Bundy and V. Lombart. Relational rippling: a general approach. In Pro-
ceedings of the 14th International Joint Conference on Artificial Intelligence,
175-181. IJCAI, 1995.

A. Bundy, A. Stevens, et al. Rippling: a heuristic for guiding inductive proofs.
Art. Int., 185-253, 1993.

A. Bundy, F. van Harmelen, J. Hesketh, and A. Smaill. Experiments with Proof
Plans for Induction. J. Automated Reasoning, 303-324, 1991.

J. Cederquist and S. Negri. A Constructive Proof of the Heine-Borel Covering
Theorem for Formal Reals. In [BC96].

R. L. Constable, S. F. Allen, et al. Implementing Mathematics with the NuPrl
Proof Development System. Prentice-Hall, 1986.

C. Coquand. From Semantics to rules: A machine assisted analysis. In [BGM93].

Th. Coquand and G. Huet. Constructions: A Higher Order Proof System for
Mechanizing Mathematics. In [Buc85], 151-184.

N. G. de Bruijn. A-Calculus Notation with Nameless Dummies, A Tool for
Automatic Formula Manipulation. Indag. Math, 34:381-392, 1972.

N. G. de Bruijn. A Survey of the Project AUTOMATH. In [SH80], 579-606.

J. Despeyroux, A. Felty, and A. Hirschowitz. Higher-Order Abstract Syntax in
Coq. In [PDC95], 124-138.

J. Despeyroux, F. Pfenning, and C. Schiurmann. Primitive Recursion for Higher
Order Abstract Syntax. Research Report CMU-CS-96-172, School of Computer
Science, Carnegie Mellon University, 1996.

P. Dybjer, B. Nordstrom, and J. Smith, editors. Types for proofs and programs:
International Workshop TYPES ’94: proceedings. Springer-Verlag LNCS 996,
1994.

R. Dyckhoff. Contraction-Free Sequent Calculi for Intuitionistic Logic. Journal
of Symbolic Logic, 57(3):795-807, 1992.

BIBLIOGRAPHY 90

[DPY6]

[DPITa]

[DPYTh]

[DPYS]

[Fel89]

[GPY4]

[Gen33]

[Gen34]

[Gim94]

[Gir87]
[GLTS9]

[GM96]

[GMWTY]

[GM93]

[Her94]

R. Dyckhoff and L. Pinto. A Permutation-Free Sequent Calculus for Intuition-
istic Logic. Research Report CS/96/9, School of Mathematical and Computa-
tional Sciences, University of St Andrews, 1996.

R. Dyckhoff and L. Pinto. Permutability of proofs in intuitionistic sequent

calculi, 1997. Submitted for publication, extended version available as [DP97h].

R. Dyckhoff and L. Pinto. Permutability of proofs in intuitionistic sequent
calculi. Research Report CS/97/7, School of Mathematical and Computational
Sciences, University of St Andrews, 1997.

R. Dyckhoff and L. Pinto. Cut-Elimination and a Permutation-Free Sequent

Calculus for Intuitionistic Logic. Studia Logica (to appear), 1998.

A. Felty. A Logic Program for Transforming Sequent Proofs to Natural Deduc-
tion Proofs. In [SH89], 157-178.

D. Galmiche and G. Perrier. On Proof Normalisation in Linear Logic. Theor-

etical Computer Science, 135(1):67-110, 1994.

G. Gentzen. On the Relation Between Intuitionistic and Classical Arithmetic.

In [Sza69], 53-67.

G. Gentzen. Investigations into Logical Deduction. In [Sza69], 68-131. Trans-

lated from 1934 original in German.

E. Giminez. Codifying guarded definitions with recursive schemes. In [DNS94],
39-59.

J.-Y. Girard. Linear Logic. Theoretical Computer Science, 50:1-102, 1987.
J-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. CUP, 1989.

A.D. Gordon and T. Melham. Five Axioms of Alpha-Conversion. In [vWGH96],
173-190.

M. J. Gordon, A. J. Milner, and C. P. Wadsworth. Edinburgh LCF. Springer-
Verlag LNCS 78, 1979.

M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL. CUP, 1993.

H. Herbelin. A A-calculus Structure Isomorphic to Gentzen-style Sequent Cal-
culus Structure. In [PT94], 61-75.

BIBLIOGRAPHY 91

[Hue94]

[HP91]
[HP93]

[Kal94]

[Kle52]

[K1092]

[Lei79]

[Luo94]

[LP92]

[MMMS90]

[ML84]

[McD97]

[MM97]

[McK96]
[MP93]

[MP97]

G. Huet. Residual Theory in A-calculus: A Complete Gallina Development. J.
Functional Programming, 3(4):371-394, 1994.

G. Huet and G. Plotkin, editors. Logical Frameworks. CUP, 1991.
G. Huet and G. Plotkin, editors. Logical Environments. CUP, 1993.

S. Kalvala. A Gentle Introduction to Isabelle, 1994. Available with system

documentation.

S. C. Kleene. Permutability of inferences in Gentzen’s calculi LK and LJ. Mem.
Amer. Math. Soc., 1-26, 1952.

J. W. Klop. Term Rewriting Systems. In [AGM92].

D. Leivant. Assumption Classes in Natural Deduction. Zeitschrift fur math.
Logik, 25:1-4, 1979.

Z. Luo. Computation and Reasoning. Clarendon Press, 1994.

7. Luo and R. Pollack. LEGO Proof Development System: User’s Manual.
Technical Report ECS-LFCS-92-211, Laboratory for Foundations of Computer
Science, University of Edinburgh, Scotland, UK, 1992.

M. Main, A. Melton, M. Mislove, and D. Schmidt, editors. International Con-
ference on the Mathematical Foundations of Programming Semantics. Springer-

Verlag LNCS 442, 1990.
P. Martin-Lof. Intuitionistic Type Theory. Bibliopolis, 1984.

R. C. McDowell. Proving Meta-Theorems in a Logical Framework. PhD, Com-
puter and Information Science Department, University of Pennsylvania, 1997.

In preparation.

R. C. McDowell and D. Miller. A Logic for Reasoning with Higher-Order Ab-
stract Syntax. (Extended Abstract). Submitted for publication, 1997.

J. McKinna. Private Communication, 1996.
J. McKinna and R. Pollack. Pure type systems formalized. In [BG93], 289-305.

J. H. McKinna and R. Pollack. Some Lambda Calculus and Type Theory
Formalised. Submitted, 1997.

BIBLIOGRAPHY 92

[MS96]

[Mil78]

[Min94]

[Min96]

[NN96]

[Nip96]

[NPS90]

[0dig6]

[PT94]

[PM93]

[Paug§]

[Pau94]

[Pau9ba)

[Pau9sb]

[Pfe91]

M. A. McRobbie and J. K. Slaney, editors. Automated deduction, Cade-13:
13th International Conference on Automated Deduction, New Brunswick, NJ,

USA, July 30-August 3, 1996: proceedings. Springer-Verlag LNAI 1104, 1996.

R. Milner. A Theory of Type Polymorphism in Programming. Journal of
Computer and System Sciences, 17:348-375, 1978.

G. Mints. Cut-elimination and normal forms of sequent derivations. Technical

Report CST.I-94-193, Stanford University, 1994.

G. Mints. Normal forms of sequent derivations. In [0di96], 469-492. Also part
of [Min94].

D. Nazareth and T. Nipkow. Formal Verification of Algorithm W: The Mono-
morphic Case. In [yWGH96], 331-345.

T. Nipkow. More Church-Rosser Proofs (in Isabelle/HOL). In [MS96].

B. Nordstrom, K. Petersson, and J. M. Smith. Programming in Martin-Lof type
theory: an introduction. Oxford University PressP, 1990.

P. Odifreddi, editor. Kreiseliana. A. K. Peters, Wellesley (Massachusetts), 1996.

L. Pacholski and J. Tiuryn, editors. Computer Science Logic ’94. Springer-
Verlag LNCS 933, 1994.

C. Paulin-Mohring. Inductive definitions in the system Cog: Rules and proper-
ties. In [BG93].

L. C. Paulson. The Foundation of a Generic Theorem Prover. J. Automated

Reasoning, 5:363-396, 1988.

L. C. Paulson. Isabelle: A Generic Theorem Prover. Springer-Verlag LNCS
8§28, 1994.

L. C. Paulson, editor. First Isabelle Users Workshop, 1995. Contact

Paulson, L. C. (Icp@cl.cam.ac.uk) for copies.

I.. C. Paulson. [Introduction to Isabelle. Computer Laboratory, Cambridge
University, 1995.

F. Pfenning. Logic programming in the LF logical framework. In [HP91], 149-
181.

BIBLIOGRAPHY 93

[PPMS9)

[PDC95]

[Pol94]

[Pra65]

[SHS9]

[Sch]

[SHS0]

[Sha94]

[Sza69]

[Tar93]

[Tar97]

[TS96]

[vBJ93]

[VBIMR94]

[VWGHY6]

F. Pfenning and C. Paulin-Mohring. Inductively Defined Types in the Calculus
of Constructions. In [MMMS90], 209-228.

G. Plotkin and M. Dezani-Ciancaglini, editors. Typed Lambda Calculus and
Applications. Springer-Verlag LNCS 902, 1995.

R. Pollack. The Theory of LEGQO: A Proof Checker for the Ertended Calcu-
lus of Constructions. PhD, Department of Computer Science, University of

Edinburgh, 1994.
D. Prawitz. Natural Deduction. Almquist & Wiksell, 1965.

P. Schroeder-Heister, editor. Eztensions of Logic Programming. Springer-Verlag
LNAT 475, 1989.

H. Schwichtenberg. Termination of permutative conversions in intuitionistic

Gentzen calculi. Submitted for publication, Jan 97.

J. P. Seldin and J. R. Hindley, editors. To H.B. Curry: essays on combinatory

logic, lambda calculus and formalism. Academic Press, 1980.

N. Shankar. Metamathematics, Machines, and Godel’s Proof. Cambridge Tracts
in Theoretical Computer Science. Cambridge, 1994.

M. E. Szabo, editor. The Collected Papers of Gerhard Gentzen. Studies in Logic
and the Foundations of Mathematics. North-Holland, 1969.

M. Tarver. A Language for Implementing Arbitrary Logics. In Proceedings of
the 13th International Joint Conference on Art. Int., 839-844, 1993.

M. Tarver. Functional Programming and Automated Deduction in SEQUEL.
Wiley, 1997. (Forthcoming).

A. S. Troelstra and H. Schwichtenberg. Basic Proof Theory. CUP, 1996.

I.. S. van Benthem Jutting. Typing in Pure Type Systems. Information and
Computation, 105(1):30-41, 1993.

L. S. van Benthem Jutting, J. McKinna, and Pollack R. Checking Algorithms
for Pure Type Systems. In [BN94], 19-61.

J. von Wright, J. Grundy, and J. Harrison, editors. Theorem Proving in Higher
Order Logics: 9th International Conference. Springer-Verlag LNCS 1125, 1996.

Appendix A

Primary Definitions and

Lemmas in Coq

A.1 De Bruijn Index Formalisation

The following are some of the main definitions and lemmas from the de Bruijn index form-

alisation examined in §7.

Section boolean_extension.

Hypothesis genset:Set.
Recursive Definition
Setifb : bool->genset->genset->genset :=
true x y => x |

false x y => y.
End boolean_extension.

Recursive Definition
nategb : nat->nat->bool :=
0 0 => true |
(s i) 0 => false |
0 (S j) => false |
(S i) (S j) => (nategb i j).

94

APPENDIX A. PRIMARY DEFINITIONS AND LEMMAS IN COQ 95

Lemma nateqb_is_eql : (i,j:nat)i=j->(nategb i j)=true.

Lemma nateqb_is_eq2 : (i, j:nat)(nategb i j)=true->i=j.

Lemma nateqb_is_eq3 : (i,j:nat)("i=j)->(nateqb i j)=false.

Lemma nategb_is_eq4 : (i,j:nat)((nategb i j)=false)->"i=j.

Recursive Definition
max_nat : nat->nat->nat :=

i j => (Setifb nat (1tb i j) j i).

Inductive
F:Set :=
form: nat->F |

Impl : F->F->F.

Inductive
In_Hyps : nat->F->Hyps->Prop :=
inhyps_base : (P:F)(h:Hyps)
(In_Hyps 0 P (Add_Hyp P h)) |
inhyps_rec : (n:nat)(P,Q:F)(h:Hyps)
(In_Hyps n P h)->
(In_Hyps (S n) P (Add_Hyp Q h)).

Definition V :Set := nat.
Inductive
L:Set :=
vr : V->L |

app : V->L->L->L |

1m : L->L.

Mutual Inductive

M:Set :=

APPENDIX A. PRIMARY DEFINITIONS AND LEMMAS IN COQ

sc : V->Ms->M |
lambda : M->M
with
Ms:Set :=
mnil : Ms |

mcons : M->Ms->Ms.

Mutual Inductive

N:Set :=
lam : N->N |
an : A->N
with
A:Set :=

ap : A->N->A |

var : V->A.

Fixpoint
theta [m:M]:N :=
<N>Case m of
[x:V] [ms:Ms] (thetal’ ms (var x))
[m:M] (1am (theta m))
end with
thetal’ [ms:Ms]:A->N :=
[a:A]<N>Case ms of
(an a)
[m:M] [ms:Ms] (thetal’ ms (ap a (theta m)))

end.

Recursive Definition
theta’ : A -> Ms -> N :=

a ms => (thetal’ ms a).

Fixpoint
psi [n:N]:M :=
<M>Case n of

[n:N](lambda (psi n))

96

APPENDIX A. PRIMARY DEFINITIONS AND LEMMAS IN COQ 97

[a:A](psi’ a mnil)
end with
psi’ [a:A]:Ms->M :=
[ms:Ms]<M>Case a of
[a’:A][n:N](psi’ a’ (mcons (psi n) ms))
[x:V](sc x ms)

end.

Lemma thetapsi:

(n:N) ((theta(psi n)) = n).

Lemma thetapsi’theta’:

(a:A) (ms:Ms) ((theta (psi’ a ms)) = (theta’ a ms)).

Recursive Definition
1ift_V : nat->V->V :=

i j => (Setifb V (1tb j i) j (S j)).

Recursive Definition
lift_L : nat->L->L :=
i (vr x) => (vr (1ift_V i x)) |
i (app x 11 12) =>
(app (1ift_V i x) (1ift_L i 11) (1ift_L (S i) 12)) |
i (Im 1) => (Im (1ift_L (S i) 1)).

Lemma Lift_Lift_V_Bridge : (x:V)(i,j:nat)
(1t 1 j)—>
(1ift_V i (Lift_V j x))=

(1ift_V (S j) (1ift_V i x)).

Recursive Definition
drop_V : nat->V->V :=

j i => (Setifb V (1tb i j) i (pred i)).

Inductive

Occurs_In_V : nat->V->Prop :=

APPENDIX A. PRIMARY DEFINITIONS AND LEMMAS IN COQ

Occurs_in_v : (i,j:nat)i=j->

(Occurs_In_V i j).

Inductive
Occurs_In_L : nat->L->Prop :=
Occurs_in_vr :
(i:nat)(x:V)
(Occurs_In_V i x)->
(Occurs_In_ L i (vr x)) |
Occurs_in_appl :
(i:nat)(x:V)(11,12:L)
(Occurs_In_V i x)->
(Occurs_In_L i (app x 11 12)) |
Occurs_in_app2 :
(i:nat) (x:V)(11,12:L)
(Occurs_In_L i 11)->
(Occurs_In_L i (app x 11 12)) |
Occurs_in_app3 :
(i:nat)(x:v)(11,12:L)
(Occurs_In_L (S i) 12)->
(Occurs_In_L i (app x 11 12)) |
Occurs_in_1m :
(i:nat)(1:L)
(Occurs_In_L (S i) 1)->
(Occurs_In_ L i (1m 1)).

Fixpoint
MsubstVMV1 [m:M] : V->M->V->M :=
[x:V][m’:M][i:V]<M>Case m of
[z:V] [ms:Ms]
(Setifb M (nateqb i z)
(sc x (mcons m’ (MssubstVMV1 ms x m’ z)))
(sc (drop_V i z) (MssubstVMV1 ms x m’ i)))
[m’:M]

(lambda (MsubstVMVi m’’ (1lift_V 0 x) (lift_M 0 m’) (S i)))

end with

98

APPENDIX A. PRIMARY DEFINITIONS AND LEMMAS IN COQ 99

MssubstVMV1 [ms:Ms] : V->M->V->Ms :=
[x:V][m’:M][i:V]<Ms>Case ms of
mnil
[m??:M] [ms’:Ms] (mcons (MsubstVMV1 m’’ x m’ i)
(MssubstVMV1 ms’ x m’ i))

end.

Recursive Definition
MsubstVMV : V->M->V->M->M :=

xmim’> => (MsubstVMVi m’ xm 1i).

Recursive Definition
MssubstVMV : V->M->V->Ms->Ms :=

xmims => (MssubstVMV1i ms x m i).

Recursive Definition
phi : L -> N :=
(vr x) => (an (var x)) |
(app x 11 12) =>
(NsubstAV (ap (var x) (phi 11)) 0 (phi 12)) |
(Im 1) => (lam (phi 1)).

Recursive Definition
phibar : L->M :=
(vr x) => (sc x mnil) |
(app x 11 12) =>
(MsubstVMV x (phibar 11) 0 (phibar 12)) |
(Im 1) => (lambda (phibar 1)).

Recursive Definition
lifts_L : nat->nat->L->L :=
i j (vr x) => (vr (lifts_V i j x)) |
i j (app x 1 10) =>
(app (1ifts_V i j x)
(lifts_L i j 1)
(1ifts_ L i (S j) 10)) |

APPENDIX A. PRIMARY DEFINITIONS AND LEMMAS IN COQ 100

ij (Im 1) => (Im (Lifts_L i (S §) 1)).

Fixpoint
rhobar [m:M] : L :=
<L>Case m of
[x:V] [ms:Ms]
<L>Case ms of
(vr x)
[m:M] [ms:Ms] (app x (rhobar m) (rhobar’ ms (S 0)))
end
[m:M] (Im (rhobar m))
end
with
rhobar’ [ms:Ms] : nat->L :=
[i:nat]<L>Case ms of
(vr 0)
[m:M] [ms:Ms](app O (lifts_L i O (rhobar m)) (rhobar’ ms (S i)))

end.

Recursive Definition
rhobarl : nat->Ms->L :=

i ms => (rhobar’ ms i).

Lemma phibarrhobar :

(m:¥) (phibar (rhobar m))=m.

Lemma phirho : (n:N)(phi (rho n))=n.

Inductive
L_Deriv : Hyps -> L -> F => Prop :=
L_Axiom :
(h:Hyps) (i:V) (P:F)
(In_Hyps i P h)->
(L_Deriv h (vr i) P) |

Implies_L :

APPENDIX A. PRIMARY DEFINITIONS AND LEMMAS IN COQ 101

(h:Hyps) (i:V)(P:F)(Q:F)(11:L)(12:L) (R:F)
(In_Hyps i (Impl P Q) h)->
(L_Deriv h 11 P)->
(L_Deriv (Add_Hyp Q h) 12 R)->
(L_Deriv h (app i 11 12) R) |
Implies_R :
(h:Hyps) (P:F)(1:L)(Q:F)
(L_Deriv (Add_Hyp P h) 1 Q)->
(L_Deriv h (1m 1) (Impl P Q)).

Mutual Inductive

M_Deriv : Hyps -> M -> F -> Prop :=

Choose :
(h:Hyps)(i:V)(P:F)(ms:Ms) (R:F)
(In_Hyps i P h)->
(Ms_Deriv h P ms R)->
(M_Deriv h (sc i ms) R) |
Abstract :

(h:Hyps) (P:F)(m:M) (Q:F)
(M_Deriv (Add_Hyp P h) m Q)->
(M_Deriv h (lambda m) (Impl P Q))
with
Ms_Deriv : Hyps -> F => Ms -> F -> Prop :=
Meet :
(h:Hyps) (P:F)
(Ms_Deriv h P mnil P) |
Implies_S :
(h:Hyps) (m:M) (P:F)(Q:F) (ms:Ms) (R:F)
(M_Deriv h m P)->
(Ms_Deriv h Q ms R)->
(Ms_Deriv h (Impl P Q) (mcons m ms) R).

Mutual Inductive
N_Deduc : Hyps -> N -> F -> Prop :=
Implies_I :
(h:Hyps) (P:F)(n:N)(Q:F)

APPENDIX A. PRIMARY DEFINITIONS AND LEMMAS IN COQ 102

(N_Deduc (Add_Hyp P h) n Q)->
(N_Deduc h (lam n) (Impl P Q)) |
AN_Axiom :
(h:Hyps) (a:4) (P:F)
(A_Deduc h a P)->
(N_Deduc h (an a) P)
with
A_Deduc : Hyps -> A -> F -> Prop :=
Implies_E :
(h:Hyps) (a:A) (P:F)(Q:F)(n:N)
(A_Deduc h a (Impl P Q))->
(N_Deduc h n P)->
(A_Deduc h (ap a n) Q) |
A_Axiom :
(h:Hyps) (i:V) (P:F)
(In_Hyps i P h)->

(A_Deduc h (var i) P).

Lemma M_Admis_Psi :
(h:Hyps) (n:N)(R:F)
(N_Deduc h n R)->

(M_Deriv h (psi n) R).

Lemma M_Admis_Psi’ :
(h:Hyps)(a:A)(ms:Ms)(R:F) (P:F)
(A_Deduc h a P)->
(Ms_Deriv h P ms R)->

(M_Deriv h (psi’ a ms) R).

Lemma N_Admis_Theta :
(h:Hyps) (m:M) (R:F)
(M_Deriv h m R)—>

(N_Deduc h (theta m) R).

Lemma N_Admis_Theta’ :

(h:Hyps) (P:F)(ms:Ms)(R:F)

APPENDIX A. PRIMARY DEFINITIONS AND LEMMAS IN COQ 103

(Ms_Deriv h P ms R)->
((a:A)((A_Deduc h a P)->

(N_Deduc h (theta’ a ms) R))).

Recursive Definition
Weaken_Hyps : nat->F->Hyps->Hyps :=
0P h => (Add_Hyp P h) |
(S n) P MT => MT |

(S n) P (Add_Hyp Q h) => (Add_Hyp Q (Weaken_Hyps n P h)).

Lemma N_Admis_Weaken :
(h:Hyps) (n:N) (P:F) (j:nat)(Q:F)
(N_Deduc h n P)->
(1t j (S (Len_Hyps h)))->

(N_Deduc (Weaken_Hyps j Q h) (1ift_N j n) P).

Lemma A_Admis_Weaken :
(h:Hyps) (a:A)(P:F)(j:nat)(Q:F)
(A_Deduc h a P)->
(1t j (S (Len_Hyps h)))->
(A_Deduc (Weaken_Hyps j Q h) (lift_A j a) P).

Lemma L_Admis_Weaken :
(h:Hyps) (1:L)(P,Q:F)(j:nat)
(L_Deriv h 1 P)->
(1t j (S (Len_Hyps h)))->

(L_Deriv (Weaken_ Hyps j Q h) (1ift_L j 1) P).

Recursive Definition

Hyps_Exchange : nat->Hyps->Hyps :

i MT => MT |

i (Add_Hyp P MT) => (Add_Hyp P MT) |

0 (Add_Hyp P (Add_Hyp Q h)) =>
(Add_Hyp Q (Add_Hyp P h)) |

(S i) (Add_Hyp P (Add_Hyp Q h)) =>

(Add_Hyp P (Hyps_Exchange i (Add_Hyp Q h))).

APPENDIX A. PRIMARY DEFINITIONS AND LEMMAS IN COQ 104

Recursive Definition
V_Exchange : nat->V->V :=
i j => (Setifb V (nategb i j)
(s 1)
(Setifb V (nategb (S i) j) i j)).

Recursive Definition
L_Exchange : nat->L->L :=
i (vr x) => (vr (V_Exchange i x)) |
i (app x 11 12) =>
(app (V_Exchange i x)
(L_Exchange i 11)
(L_Exchange (S i) 12)) |

i (Im 1) => (Im (L_Exchange (S i) 1)).

Lemma L_Admis_Exch :
(h:Hyps)(1:L)(R:F)(j:nat)(P,Q:F)
(L_Deriv h 1 R)->
(In_Hyps j P h)->
(In_Hyps (S j) Q h)->
(L_Deriv (Hyps_Exchange j h)
(L_Exchange j 1)
R).

Lemma RhoBarl : (x:V)

(rhobar (sc x mnil))=(vr x).
Lemma RhoBar2 : (ms:Ms)(x:V)(m:M)
(rhobar (sc x (mcons m ms)))=

(app x (rhobar m) (rhobar (sc 0 (lift_Ms 0 ms)))).

Lemma RhoBar3 : (m:M)

(rhobar (lambda m))=(1lm (rhobar m)).

Lemma L_Admis_RhoBar : (h:Hyps)(m:M)(P:F)

APPENDIX A. PRIMARY DEFINITIONS AND LEMMAS IN COQ

(M_Deriv h m P)->
(L_Deriv h (rhobar m) P).

Lemma L_Admis_Rho : (h:Hyps)(n:N)(P:F)
(N_Deduc h n P)->
(L_Deriv h (rho n) P).

Mutual Inductive
Norm_L : L->Prop :=
norm_vr : (x:V)(Norm_L (vr x)) |
norm_app :
(x:V)(11,12:L)
(Norm_L 11)->
(Norm’_L 12)->
(Norm_L (app x 11 12)) |
norm_1lm :
(1:1)
(Norm_L 1)->
(Norm_L (Im 1))
with
Norm’_L : L->Prop :=
norm’ _vr : (Norm’_L (vr 0)) |
norm’_app :
(11,12:L)
(Norm_L 11)->
(Norm’ _L 12)->
“(Occurs_In_L 0 11)->
“(Occurs_In_L (S 0) 12)->
(Norm’_L (app 0 11 12)).

Lemma Norm_L_RhoBar : (m:M)
(Norm_L (rhobar m)).

Lemma Norm’_L_RhoBar : (ms:Ms)

(Norm’_L (rhobar (sc 0 (lift_Ms O ms)))).

o}

APPENDIX A. PRIMARY DEFINITIONS AND LEMMAS IN COQ 106

Inductive
L_Perml : L->L->Prop :=
1 _permi_Im :
(11,12:L)
(L_Permi 11 12)->
(L_Permil (Im 11) (1Im 12)) |
1_perml_appl :
(i:V)(111,112,12:L)
(L_Permi 111 112)->
(L_Permi (app i 111 12) (app i 112 12)) |
1_permi_app2 :
(i:v)(11,121,122:L)
(L_Permi 121 122)->
(L_Perml (app i 11 121) (app i 11 122)) |
1_perml_app_wkn :
(x:V)(11,12:L)
“(Occurs_In_L 0 12)->
(L_Permi (app x 11 12) (drop_L 0 12)) |
1_perml_app_appl :
(x,y:V)(11,12,13:L)
((0ccurs_In_L 0 12)\/(0ccurs_In_L (S 0) 13))->
(Norm’_L 13)->
(L_Permi (app x 11 (app (S y) 12 13))
(app y
(app x 11 12)
(app (1ift_V 0 x)
(lift_L 0 11)
(L_Exchange 0 13)))) |
1_permi_app_app2 :
(x:V)(11,12,13:L)
((0ccurs_In_L 0 12)\/(0ccurs_In_L (S 0) 13))->
(Norm’_L 13)->
(L_Perml (app x 11 (app 0 12 13))
(app x
11

(app O

APPENDIX A. PRIMARY DEFINITIONS AND LEMMAS IN COQ 107

(app (1ift_V 0 x)
(lift_L 0 11)
(1ift_L (s 0) 12))

(app (1ifts_V (S (S 0)) 0 x)
(lifts_L (S (s 0)) 0 11)
(L_Exchange 0

(1ift_L (s (s 0)) 13)))))) |
1_permi_app_lm : (x:V)(11,12:L)
(L_Permi (app x 11 (1m 12))
(Im (app (1ift_V 0 x)
(1ift_L 0 11)

(L_Exchange 0 12)))).

Inductive
L_Permn : L->L->Prop :=
1_permn_base :
(10,11:L)
10=11->
(L_Permn 10 11) |
1_permn_rec :
(10,11,12:L)
(L_Permi 10 11)->
(L_Permn 11 12)->

(L_Permn 10 12).

Lemma L_Admis_Perml :
(1,10:L) (h:Hyps) (P:F)
(L_Permi1 1 10)->
(L_Derivh 1 P)->

(L_Deriv h 10 P).

Lemma L_Permnn :
(1,10,11:L)
(L_Permn 1 10)->
(L_Permn 10 11)->

(L_Permn 1 11).

APPENDIX A. PRIMARY DEFINITIONS AND LEMMAS IN COQ 108

Lemma IL_Admis_Permn :
(h:Hyps) (10,11:L)(P:F)
(L_Permn 10 11)->
(L_Deriv h 10 P)->

(L_Deriv h 11 P).

Lemma App_Red_M :
(x:V)(m1,m:M)
(L_Permn (app x (rhobar mi) (rhobar m))
(rhobar (MsubstVMV x m1 0 m))).

Lemma Norm_Red :

(1:L)(L_Permn 1 (rhobar (phibar 1))).

A.2 CMP Method Formalisation

The following are some of the main definitions and lemmas from the CMP method formal-

isation examined in §8.

Parameter Var:Set.

Parameter Varegb : Var->Var->bool.

Parameter Varegb_is_eql :
(x,y:Var)
X=y->

(Varegb x y)=true.

Parameter Vareqb_is_eq2 :
(x,y:Var)
(Varegb x y)=true->

X=y.

Lemma Vareqb_is_eq3 :

(x,y:Var)

APPENDIX A. PRIMARY DEFINITIONS AND LEMMAS IN COQ

“x=y->

(Varegb x y)=false.

Lemma Vareqb_is_eqg4 :
(x,y:Var)
(Varegb x y)=false->
“x=y.

Parameter New_Var : (list Var)->Var.

Parameter New_New_Var :
(1:(1ist Var))

“(In Var (New_Var 1) 1).

Inductive V : Set :=
BV : Var->V |

FV : Var->V.

Recursive Definition
VBTF : Var->Var->V->V :=
x y (BV z) => (Setifb V (Varegb x z) (FV y) (BV z)) |
x y (FV z) => (FV z).

Recursive Definition
VFTF : Var->Var->V->V :=
f1 £2 (BV b) => (BV b) |

f1 £2 (FV £3) => (FV (Setifb Var (Vareqb f1 £3) f2 £3)).

Mutual Inductive
N:Set :=
lam : Var->N->N |
an : A->N
with
A:Set :=
ap : A->N->A |

var : V->A.

109

APPENDIX A. PRIMARY DEFINITIONS AND LEMMAS IN COQ 110

Fixpoint
NBTF1 [n:N]: Var->Var->N :=
[b,f:Var]Cases n of
(lam x n’) =>
(Setifb N (Varegb x b)
(lam x n’)
(1am x (NBTF1 n’ b £))) |
(an a) => (an (ABTF1 a b f))
end with
ABTF1 [a:A]: Var->Var->A :=
[b,f:Var]Cases a of
(ap a’ n) => (ap (ABTF1 a’ b f) (NBTF1 n b £f)) |
(var x) => (var (VBTF b f x))

end.

Mutual Inductive
Nclosed : N->Prop :=
lamclosed :
(x,y:Var) (n:N)
(Nclosed (NBTF x y n))->
(Nclosed (lam x n)) |
anclosed :
(a:h)
(Aclosed a)->
(Nclosed (an a))
with
Aclosed : A->Prop :=
apclosed :
(a:A)(n:N)
(Aclosed a)->
(Nclosed n)->
(Aclosed (ap a n)) |
varclosed :
(x:Var)
(Aclosed (var (FV x))).

APPENDIX A. PRIMARY DEFINITIONS AND LEMMAS IN COQ

Mutual Inductive
Nclosed’ : N->Prop :=
lamclosed’
(x:Var)(n:N)
((y:Var)(Nclosed’ (NBTF x y n)))->
(Nclosed’ (lam x n)) |
anclosed’
(a:h)
(Aclosed’ a)->
(Nclosed’® (an a))
with
Aclosed’ : A->Prop :=
apclosed’
(a:4)(n:N)
(Aclosed’ a)->
(Nclosed’ n)->
(Aclosed’ (ap a n)) |
varclosed’
(x:Var)

(Aclosed’ (var (FV x))).

Mutual Inductive

Neq : N->N->Prop :=

lameq :
(x,y,f:Var)(n1,n2:N)
“(Free_In_N f ni1)->
“(Free_In_N f n2)->
(Neq (NBTF x f ni) (NBTF y f n2))->
(Neq (lam x ni1) (lam y n2)) |
aneq :

(a1,a2:4)
(heq al a2)->
(Neq (an al) (an a2))
with
Aeq : A->A->Prop :=

apeq :

111

APPENDIX A. PRIMARY DEFINITIONS AND LEMMAS IN COQ 112

(a1:4)(n1:N)(a2:4) (n2:N)
(Aeq al a2)->
(Neq ni n2)->
(Leq (ap al nl1) (ap a2 n2)) |
vareq :
(x:Var)

(Aeq (var (FV x)) (var (FV x))).

Mutual Inductive

Neq’ : N->N->Prop :=

lameq’
(x,y:Var)(n1,n2:N)
((f:Var)“(Free_In_N f ni1)->
“(Free_In_N f n2)->
(Neq’ (NBTF x f n1) (NBTF y f n2)))->
(Neq’ (lam x n1) (lam y n2)) |
aneq’

(a1,a2:4)
(Aeq’ al a2)->
(Neq’ (an al) (an a2))
with

Aeq’ : A->A->Prop :=

apeq’
(a1:4)(n1:N)(a2:4) (n2:N)
(Aeq’ al a2)->
(Neq’ ni1 n2)->
(Aeq’ (ap al n1) (ap a2 n2)) |
vareq’

(x:Var)

(Aeq’ (var (FV x)) (var (FV x))).

Lemma N_A_eq_ind’ :
(P:(n,n0:N)(Neq n n0)->Prop)
(P0:(a,a0:A)(Aeq a a0)->Prop)
((x,y:Var)(n1,n2:N)

(n:(f:Var)~(Free_In_N f n1)->"(Free_In_N f n2)->

APPENDIX A. PRIMARY DEFINITIONS AND LEMMAS IN COQ 113

(Neq (NBTF x f ni) (NBTF y f n2)))
((f:Var)
(n0:~(Free_In_N f nil))
(n3:"(Free_In_N f n2))
(P (NBTF x f n1) (NBTF y f n2) (n f n0O n3)))->
(P (lam x n1) (lam y n2) (lameq x y nl n2 n)))->
((a1,a2:4)(a: (Aeq al a2))
(PO a1 a2 a)->(P (an al) (an a2) (aneq al a2 a)))->
((a1:4)(n1:N)(a2:4)(n2:N)
(a:(keq al a2))
(PO a1 a2 a)->
(n:(Neq n1 n2))
(P n1 n2 n)->
(PO (ap al n1) (ap a2 n2)
(apeq al nl1 a2 n2 a n)))->
((x:vVar) (PO (var (FV x)) (var (FV x)) (vareq x)))->
((n,n0:N)(n1:(Neq n n0))(P n n0 n1))/\
((a,a0:A)(al:(Aeq a a0)) (PO a a0 al)).
Mutual Inductive
N_Deduc : Hyps -> N -> F -> Prop :=
Implies_I :
(H:Hyps)(P:F)(b,f:Var) (n:N)(Q:F)
“(Free_In_N f n)->
“(Free_In_Hyps f H)->
(N_Deduc (Add_Hyp f P H)
(NBTF b £ n) Q)->
(N_Deduc H (lam b n) (Impl P Q)) |
AN_Axiom :
(H:Hyps) (a:4) (P:F)
(A_Deduc H a P)->
(N_Deduc H (an a) P)
with
A_Deduc : Hyps -> A -> F -> Prop :=
Implies_E :
(H:Hyps) (a:4)(P:F)(Q:F)(n:N)
(A_Deduc H a (Impl P Q))->

APPENDIX A. PRIMARY DEFINITIONS AND LEMMAS IN COQ 114

(N_Deduc Hn P)->
(A_Deduc H (ap a n) Q) |
A_Axiom :
(H:Hyps) (i:Var)(P:F)
(In_Hyps i P H)->
(A_Deduc H (var (FV i)) P).

Lemma Neq_Deduc :
(H:Hyps) (n1,n2:N) (P:F)
(N_Deduc H ni1 P)->
(Neq ni1 n2)->
(N_Deduc H n2 P).

Lemma Aeq_Deduc :
(H:Hyps) (al,a2:A) (P:F)
(A_Deduc H al P)->
(heq al a2)->
(A_Deduc H a2 P).

Lemma Meq_Deriv :
(H:Hyps) (m1,m2:M) (P:F)
(M_Deriv H m1 P)->
(Meq mi1 m2)->
(M_Deriv H m2 P).

Lemma Mseq_Deriv :
(H:Hyps) (ms1,ms2:Ms)(P,Q:F)
(Ms_Deriv H P msi1 Q)->
(Mseq msi1 ms2)->

(Ms_Deriv H P ms2 Q).

Lemma N_Admis_Theta :
(h:Hyps) (m:M) (R:F)
(M_Deriv h m R)->
(N_Deduc h (theta m) R).

APPENDIX A. PRIMARY DEFINITIONS AND LEMMAS IN COQ 11

Lemma N_Admis_Theta’ :
(h:Hyps) (P:F) (ms:Ms) (R:F)
(Ms_Deriv h P ms R)->
((a:A)((A_Deduc h a P)->

(N_Deduc h (theta’ a ms) R))).

Lemma M_Admis_Psi :
(h:Hyps) (n:N)(R:F)
(N_Deduc h n R)—>

(M_Deriv h (psi n) R).

Lemma M_Admis_Psi’ :
(h:Hyps)(a:4) (ms:Ms)(R:F)(P:F)
(A_Deduc h a P)->
(Ms_Deriv h P ms R)->

(M_Deriv h (psi’ a ms) R).

Appendix B

Full Development in Coq using

de Bruijn Indices

This appendix includes all the definitions and the statements of the lemmas proved in
the development of the meta-theory from §2 using de Bruijn indices (approximately 4000
lines of Coq code). Not included are the many lines of proof script (an extra 6500 lines

approximately).

116

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJIN INDICES 117

Declare ML Module "autocontra'.
Grammar tactic simple_tactic :=
["Auto_Contra" identarg($id)] ->
[(TRY (auto_contra $id))].
Grammar tactic simple_tactic :=
["Auto_Contra"] ->
[(TRY (auto_contran))].

Require Bool.

Lemma bool_decl

(b:bool) " (Is_true b)->(Is_true (negb b)).

Lemma bool_dec2

(b:bool) “b=true->(Is_true (negb b)).

Lemma bool_dec3

(b:bool) (Is_true b)->(b=true).

Lemma bool_dec4

(b:bool) “b=false->b=true.

Lemma bool_dech

(b:bool) “b=true->b=false.

Lemma bool_dec6

(b:bool)b=false->"b=true.

Lemma bool_dec?7

(b:bool)b=true->"b=false.

Section boolean_extension.

Hypothesis genset:Set.

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

Recursive Definition
Setifb : bool->genset->genset->genset :=
true x y => x |

false x y => y.

Lemma orbor : (b1l,b2:bool)

(orb bl b2)=true->bil=true\/b2=true.

End boolean_extension.

Lemma ororb : (b1l,b2:bool)

(bl=true\/b2=true)->(orb bl b2)=true.

Lemma orborl : (bl,b2:bool)

(orb bl b2)=false->bl=false/\b2=false.

Lemma ororbi : (b1l,b2:bool)

(bi=false/\b2=false)->(orb bl b2)=false.

Lemma sym_andb : (bi,b2:bool)

(andb bl b2)=(andb b2 bi).

Lemma andbf : (b:bool)

(andb b false)=false.
Inductive
1t : nat->nat->Prop :=
1t_0 : (i:nat)(1t 0 (S i)) |
1t_S : (i,j:nat) (1t i j)->(1t (S i) (S j)).
Lemma S1 : (i,j:nat)(i=j)->"i=(S j).

Lemma S2 : (i,j:nat)(i=j)->"i=(S (S j)).

Lemma Splus : (i,j:nat)(plus i (S j))=(S (plus i j)).

118

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

Lemma Not_Splus : (i,j:nat)~(S (plus i j))=j.

Recursive Definition nategb : nat->nat->bool :=

0 0 => true |

(s i) 0 => false |

0 (S j) => false |

(s i) (S j) => (nategb i j).

Lemma nateqb_sym : (i,j:nat)(nategb i j)=(nategb j 1i).

Lemma nateqb_is_eql : (i,j:nat)i=j->(nategb i j)=true.

Lemma nateqb_is_eq2 : (i, j:nat)(nategb i j)=true->i=j.

Lemma nateqb_is_eq3 : (i,j:nat)("i=j)->(nateqb i j)=false.

Lemma nateqb_is_eq4 : (i,j:nat)((nategb i j)=false)->"i=j.

Definition nat_comparel : nat->nat->Prop :=

[i,j:nat]((nategb i j)=true)\/(nategb i j)=false.

Lemma nateqb_dec : (i,j:nat)(nat_comparel i j).

Definition nat_compare : nat->nat->Prop :=

[i,j:natli=j\/"i=j.

Lemma nateq_dec : (i,j:nat)(nat_compare i j).

Lemma nateq_decl : (i,j:nat)(P:Prop)
i=j->

i=j->

P.

Recursive Definition
1tb : nat->nat->bool :=

0 0 => false |

119

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

0 (S j) => true |
(s i) 0 => false |
(s i) (S j) => (1tb i j).

Lemma 1tb_is_1t1 : (i,j:nat)

(1t i j)->(1tb i j)=true.

Lemma 1tb_is_1t2 : (i,j:nat)

(1tb i j)=true->(1t i j).

Lemma 1tb_is_1t3 : (i,j:nat)

“(1t i j)->(1tb i j)=false.

Lemma 1tb_is_1t4 : (i,j:nat)

(1tb i j)=false->"(1t i j).

Lemma 1lt_not_eql : (i,j:nat)

(1t i j)->"i=j.

Definition nat_compare2 : nat->nat->Prop :=

[i,j:nat]1 (1t i §)\/i=j\/(1t j i).

Lemma natlt_dec : (i,j:nat)(nat_compare2 i j).

Lemma 1tS : (i,j:nat)

(1t i j)->(1t i (S j)).

Lemma 1tSplusi : (i,j:nat)
(1t 1 (S (plus i j))).

Lemma 1tSplus2 : (i,j:nat)
(1t 1 (s (plus j 1))).

Lemma 1tSplus3 : (i,j,k:nat)
(1t i j)—>
(1t i (S (plus k j))).

120

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRULJN INDICES 121

Lemma ltplusl : (i,j,k:nat)
(1t i k)->
(1t 0 j)->
(1t i (plus j k)).

Lemma plus_bridge : (i,j:nat)

(plus i (S j))=(S (plus i j)).

Lemma S1t : (i,j:nat)
(1t (s i) j)—>
(1t 1 j).

Lemma notltbii : (i,j:nat)
i=j->

(1tb i j)=false.

Lemma 1ltplus2 : (j,h,i:nat)
(1t i h)->
(1t i (plus j h)).

Lemma 1lt_trans : (k,i,j:nat)
(1t i j)—>
(1t j x)—>

(1t i k).

Lemma 1lt_transil : (i,k,j:nat)
(1t i j)->
(1t j k)->
(1t (s i) k).

Lemma ltnotlt : (i,j:nat)

(1t i j)->"(1t j i).

Lemma ltnotO : (i,j:nat)

(1t i j)->~j=0.

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRULJN INDICES 122

Lemma not_eq_notO_not_pred_eq : (i,j:nat)
"i=0->
" j=0->

i=j->

“(pred i)=(pred j).

Lemma 1tiSi : (i,j:nat)
i=j->

(1t i (S 3)).

Lemma notltii : (i,j:nat)
i=j->

(1t i j).

Lemma 1tS_ltpred : (i,j:nat)
(1t (s 1) j)=->
(1t i (pred j)).

Lemma ltpred_1tS : (i,j:nat)
(1t i (pred j))->
(1t (s 1)).

Lemma 1t_S_le : (j,i:nat)
(1t 1 j)—>
(s i)=j\/(1t (s i) j).

Lemma 1t_S_le2 : (i,j:nat)
(1t i (8 j))->
(1t 1 jH\/i=j.

Lemma 1lt_trans2 : (i,j,k:nat)
(1t i (s j))->
(1t j k)—>
(1t i k).

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRULJN INDICES 123

Lemma 1lt_trans3 : (i,j,k:nat)
(1t i j)->
(1t j (S k))->
(1t i k).

Lemma not_lt_eq_1lt : (i,j:nat)
“(1t i j)->
i=j\/(1t j 1i).

Lemma 1tS_neq_lt : (j,i:nat)
(1t i (S j))->
“i=j->

(1t i j).

Lemma 1lt_not_ltpred : (i,j:nat)
(1t 1 j)=->
“(1t (pred j) 1i).

Lemma 1t_not_1tS : (i,j:nat)
(1t i j)->
(1t j (s 1)).

Lemma plus_eq2 : (i,j:nat)
(plus (S i) j)=
(S (plus i j)).

Lemma plus_right_id : (i:nat)

(plus i 0)=i.

Lemma sym_plus : (i,j:nat)

(plus i j)=(plus j 1i).

Lemma 1tS_not_1lt : (i,j:nat)
(1t i (S j))—>
(1t j 1).

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRULJIN INDICES 124

Lemma 1ltplus3 : (i,j:nat)
(1t 0 j)->
(1t i (plus j i)).

Lemma ltplus4 : (i,j,k:nat)
(1t (plus i j) k)—>

(1t i k).

Lemma ltplus6: (i,j,k,n:nat)
(1t k i)->
(1t n j)->
(1t (plus k n) (plus i j)).

Lemma ltplus5: (k,j,i,n:nat)
(1t (plus i j) (plus k n))->
(1t i ®»)\/(1t j B\t i n)\/(1t j n).

Recursive Definition
max_nat : nat->nat->nat :=

i j => (Setifb nat (1tb i j) j 1i).

Lemma max_nat0 : (i:nat)

(max_nat i 0)=i.

Lemma sym_max_nat : (i,j:nat)

(max_nat i j)=(max_nat j i).

Lemma 1lt_max_nat : (i,j,k:nat)
(1t i (S (max_nat j k)))->
(1t i (5 7)) /N (1t k (5 NV
(1t i (S k)) /\ (1t j (S k))).

Lemma eq_max_nat : (i,j,k:nat)
i=(S (max_nat j k))->

(i=(s j)/\ (1t k (S NN/

(i=(s k)/\ (1t j (5 kK))).

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRULJN INDICES 125

Lemma lt_max_natl : (i,j,k:nat)
i=j->

(1t i (S (max_nat j k))).

Lemma 1lt_max_nat2 :
(i,j,k:nat)
(1t i j)—>

(1t i (max_nat j k)).

Lemma S_max_nat_bridge0 :
(i,j:nat)

(S (max_nat i j))=(max_nat (S i) (S j)).

Grammar tactic simple_tactic :=
["NComp2" command:command($i) command:command($j)] ->
[let $1 = <<(nat_compare2 $i $j)>> in
<:tactic:< Cut $1 ;

[Destruct 1; [Intro | Destruct 1; Intro] | Autol>>].

Grammar tactic simple_tactic :=
["NComp" command:command($i) command:command($j)] ->
[let $1 = <<(nat_compare $i $j)>> in
<:tactic:< Cut $1 ;
[Destruct 1; Intro |

Auto]>>].

Grammar tactic simple_tactic :=
["Induction_clear" identarg($i)] ->

[<:tactic:<Induction $i; Clear $i>>].
Grammar tactic simple_tactic :=
["Injection_clear" identarg($i)] ->

[<:tactic:<Injection $i; Clear $i; Intros>>].

Inductive F:Set :=

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

form: nat->F |

Impl : F->F->F.

Recursive Definition Feqb : F->F->bool :=

(form x) (form y) => (nategb x y) |

(form x) (Impl P’ Q’) => false |

(Impl P Q) (form y) => false |

(Impl P Q) (Impl P’ Q’) => (andb (Fegqb P P’) (Fegqb Q Q’)).
Lemma Feqb_sym : (P,Q:F)(Feqb P Q)=(Feqb Q P).

Lemma Feqb_is_eql : (P,Q:F)(P=Q)->(Feqb P Q)=true.

Lemma Feqb_is_eq2 :
(P,Q:F)(Fegb P Q)=true->P=Q.

Lemma Feqb_is_eq3 : (P,Q:F)("P=Q)->(Fegb P Q)=false.

Lemma Feqb_is_eq4 : (P,Q:F)(Feqb P Q)=false->"P=Q.

Definition F_comparel : F->F->Prop :=

[P,Q:F]((Fegb P Q)=true)\/(Fegb P Q)=false.

Lemma Feqb_dec : (P,Q:F)(F_comparel P Q).

Definition F_compare : F->F->Prop :=

[P,Q:F1P=Q\/"P=Q.

Lemma Feq_dec : (P,Q:F)(F_compare P Q).

Lemma Feq_decl : (i,j:F)(P:Prop)
i=j->

i=j->

P.

Lemma Feq_dec2 : (i,j:F)(P:Prop)

126

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJIN INDICES 127

i=j->

i=j->

“P.

Grammar command command3 :=

["Hyps"] -> [$0=<<(1list F)>>].

Grammar command command3 :=

["MT"] -> [$0=<<(nil F)>>].

Grammar command command3 :=
["Add_Hyp" command:command($f) command:command($h)] ->
[$0 = <<(cons F $f $h)>>].

Grammar command command3 :=
["Len_Hyps'" command:command($h)] ->

[$0 = <<(length F $h)>>].

Lemma Add_Hypi1 :
(i:Hyps)(P:F)~(Add_Hyp P i)=i.

Recursive Definition
Hypseqb : Hyps->Hyps->bool :=
MT MT => true |
MT (Add_Hyp P’ h’) => false |
(Add_Hyp P h) MT => false |

(Add_Hyp P h) (Add_Hyp P’ h’) => (andb (Feqb P P’) (Hypsegb h h’)).

Lemma Hypsegb_sym :

(i,j:Hyps) (Hypseqb i j)=(Hypsegb j i).

Lemma Hypseqb_is_eql :

(i,j:Hyps)i=j->(Hypseqb i j)=true.

Lemma Hypsegb_is_eq2 :

(i,j:Hyps) (Hypsegb i j)=true->i=j.

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

Lemma Hypseqb_is_eq3 :

(i,j:Hyps)("i=j)->(Hypseqb i j)=false.

Lemma Hypsegb_is_eq4 :

(i,j:Hyps) (Hypsegb i j)=false->"i=j.

Definition Hyps_comparel : Hyps—->Hyps—>Prop :=

[i,j:Hyps]((Hypsegb i j)=true)\/(Hypsegb i j)=false.

Lemma Hypsegb_dec :

(i,j:Hyps) (Hyps_comparel i j).

Definition Hyps_compare :Hyps->Hyps->Prop :=

[i,j:Hypsli=j\/"i=j.

Lemma Hypseq_dec :

(i,j:Hyps) (Hyps_compare i j).

Inductive
In_Hyps : nat->F->Hyps->Prop :=
inhyps_base : (P:F)(h:Hyps)
(In_Hyps 0 P (Add_Hyp P h)) |
inhyps_rec : (n:nat)(P,Q:F)(h:Hyps)
(In_Hyps n P h)->
(In_Hyps (S n) P (Add_Hyp Q h)).

Definition V :Set := nat.

Lemma In_1t :
(h:Hyps) (x:V)(P:F)
(In_Hyps x P h)->
(1t x (Len_Hyps h)).

Inductive

L:Set :=

128

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRULJN INDICES 129

vr : V->L |
app : V->L->L->L |

Im : L->L.

Mutual Inductive
M:Set :=
sc : V->Ms->M |
lambda : M->M
with
Ms:Set :=
mnil : Ms |

mcons : M->Ms->Ms.

Scheme M_Ms_ind1l := Induction for M Sort Prop

with Ms_M_indl := Induction for Ms Sort Prop.

Lemma M_Ms_ind

(P:M->Prop)
(PO:Ms->Prop)

((v:V)(m:Ms) (PO m)->(P (sc v m)))

=>((m:M) (P m)->(P (lambda m)))

->(P0 mnil)
=>((m:M) (P m)->(m0:Ms) (PO m0)->(PO (mcons m m0)))
=>(((m:M) (P m)) /\ ((ms:Ms)(PO ms))).

Mutual Inductive

N:Set :=
lam : N->N |
an : A->N
with
A:Set :=

ap : A->N->A |

var : V->A.

Scheme N_A_ind1l := Induction for N Sort Prop

with A_N_ind1l := Induction for A Sort Prop.

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

Lemma N_A_ind
: (P:N->Prop)
(PO:A->Prop)
((n:N) (P n)->(P (lam n)))
->((a:4) (PO a)->(P (an a)))
->((a:4) (PO a)->(n:N)(P n)->(P0 (ap a n)))
->((v:V) (PO (var v)))
=>(((n:N)(P n)) /\ ((a:4)(P0O a))).

Fixpoint
theta [m:M]:N :=
<N>Case m of
[x:V] [ms:Ms]
(thetal’ ms (var x))
[m:M]
(lam (theta m))
end with
thetal’ [ms:Ms]:A->N :=
[a:A]<N>Case ms of
(an a)
[m:M] [ms:Ms]
(thetal’ ms (ap a (theta m)))

end.

Recursive Definition theta’ : A -> Ms -> N :=

a ms => (thetal’ ms a).

Lemma thl : (x:V)(ms:Ms)((theta (sc x ms)) = (theta’ (var x) ms)).

Lemma th2 : (m:M)((theta (lambda m)) = (lam (theta m))).

Lemma th3 : (a:A)((theta’ a mnil) = (an a)).

Lemma th4 : (m:M)(ms:Ms)(a:4)((theta’ a (mcons m ms))

= (theta’ (ap a (theta m)) ms)).

130

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRULJN INDICES 131

Fixpoint
psi [n:N]:M :=
<M>Case n of
[n:N]
(lambda (psi n))
[a:4A]
(psi’ a mnil)
end with
psi’ [a:A]:Ms->M :=
[ms:Ms]<M>Case a of
[a’:A][n:N]
(psi’ a’ (mcons (psi n) ms))
[x:V]
(sc x ms)

end.

Lemma ps1 : (n:N)((psi (lam n)) = (lambda (psi n))).

Lemma ps2 : (a:4)((psi (an a)) = (psi’ a mnil)).

Lemma ps3 : (a:4)(n:N)(ms:Ms)((psi’ (ap a n) ms)

= (psi’ a (mcons (psi n) ms))).

Lemma ps4 : (x:V)(ms:Ms)((psi’ (var x) ms) = (sc x ms)).

Definition thpsids :N->Prop :=

[n:N] ((theta (psi n)) = n).

Definition thps’th’s :A->Prop :=

[a:A] (ms:Ms) ((theta (psi’ a ms)) = (theta’ a ms)).

Lemma thpsid : ((n:N)(thpsids n))/\((a:A4)(thps’th’s a)).

Lemma thetapsi:

(n:N) ((theta(psi n)) = n).

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

Lemma thetapsi’theta’:

(a:4) (ms:Ms) ((theta (psi’ a ms)) = (theta’ a ms)).

Definition psthids :M->Prop :=

[m:M] ((psi (theta m)) = m).

Definition psth’ps’s :Ms->Prop :=

[ms:Ms](a:4) ((psi (theta’ a ms)) = (psi’ a ms)).

Lemma psthid : ((m:M)(psthids m))/\((ms:Ms)(psth’ps’s ms)).

Lemma psitheta:

(m:M) ((psi(theta m))=m).

Lemma psitheta’psi’:

(ms:Ms)(a:A) ((psi (theta’ a ms)) = (psi’ a ms)).

Recursive Definition 1lift_V : nat->V->V :

i j => (Setifb V (1tb j i) j (S j)).

Recursive Definition
lift_L : nat->L->L :=
i (vr x) => (vr (Lift_V i x)) |
i (app x 11 12) =>
(app (Lift_V i x) (lift_L i 11) (1ift_L (S i) 12)) |
i (Im 1) => (Im (1ift_L (S i) 1)).

Fixpoint
lift_M1 [m:M] : nat->M :=
[i:nat]<M>Case m of
[x:V] [ms:Ms]
(sc (1ift_V i x) (lift_Msl ms 1i))
[m’:M]
(lambda (1ift_M1 m’ (S i)))

end with

132

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRULJN INDICES 133

1lift_Ms1 [ms:Ms] : nat->Ms :=
[i:nat]<Ms>Case ms of
mnil
[m:M] [ms’ :Ms]
(mcons (1ift_M1 m i) (lift_Msi1 ms’ 1))

end.

Recursive Definition
lift_M : nat->M->M :=

im=> (lift_ Ml m i).

Recursive Definition
1lift_Ms : nat->Ms->Ms :=

i ms => (lift_Msl ms i).

Fixpoint
1ift_N1 [n:N] : nat->N :=
[i:nat]<N>Case n of
[n’:N]
(lam (1lift_N1i n’ (S 1i)))
[a:A]
(an (1lift_A1 a i))
end with
lift_A1 [a:A] : nat->A :=
[i:nat]<A>Case a of
[a’:A][n:N]
(ap (lift_A1 a’ i) (1ift_Ni n i))
[x:Vv]
(var (1ift_V i x))

end.

Recursive Definition 1ift_N : nat->N->N :

in=> (lift_N1 n i).

Recursive Definition 1lift_A : nat->A->A :

ia=> (lift_A1 a 1i).

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJIN INDICES 134

Lemma LIFTM1 : (i:nat)(x:V)(ms:Ms)
((1ift_M i (sc x ms)) =

(sc (1ift_V i x) (lift_Ms i ms))).

Lemma LIFTM2 : (i:nat)(m:M)

((1ift_M i (lambda m)) = (lambda (1ift_M (S i) m))).

Lemma LIFTM3 : (i:nat)(lift_Ms i mnil)=mnil.

Lemma LIFTM4 : (i:nat)(m:M)(ms:Ms)((lift_Ms i (mcons m ms)) =

(mcons (lift_M i m) (lift_Ms i ms))).

Lemma LIFTN1 : (i:nat)(n:N)((1ift_N i (lam n)) = (lam (1ift_N (S i) n))).

Lemma LIFTN2 : (i:nat)(a:A)((lift_N i (an a)) = (an (lift_A i a))).

Lemma LIFTN3 : (i:nat)(a:A)(n:N)

((1ift_A i (ap a n)) = (ap (lift_A i a) (lift_N i n))).

Lemma LIFTN4 : (i:nat)(x:V)((lift_A i (var x)) = (var (lift_V i x))).

Lemma Lift_Lift_V_Bridge : (x:V)(i,j:nat)
(1t 1 j)—>
(Lift_V i (1ift_V j x))=

(1ift_V (S j) (1ift_V i x)).

Lemma Lift_Lift_L_Bridge : (1:L)(i,j:nat)
(1t i j)->
(1ift_L i (Lift_L j 1))=
(1ift_L (S j) (1ift_L i 1)).

Definition 1lift_lift_n_bridge : N->Prop :=
[n:N](i,j:nat)
(1t 1 j)—>

(Lift_N i (1ift_N j n))=

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

(1ift_N (S j) (1ift_N i n)).

Definition lift_lift_a_bridge : A->Prop :=
[a:41(i,j:nat)
(1t 1 j)—>
(1ift_A i (lift_A j a))=

(1ift_A (S j) (1lift_A i a)).

Lemma 1lift_lift_n_Bridge :
((n:N)(1ift_lift_n_bridge n))/\

((a:8)(1ift_lift_a_bridge a)).

Lemma Lift_Lift_N_Bridge :
(n:N)(i,j:nat)
(1t i j)->
(1ift_N i (1ift_N j n))=

(1ift_N (S j) (1ift_N i n)).

Lemma Lift_Lift_A_Bridge :
(a:4)(i,j:nat)
(1t i j)->
(1ift_A i (lift_A j a))=
(1ift_A (S j) (1lift_A i a)).

Lemma Lift_Lift_V_BridgeO : (x:V)(i,j:nat)
(1t j 1)—>
(1ift_V i (Lift_V j x))=

(Lift_V j (1ift_V (pred i) x)).

Lemma Lift_Lift_L_BridgeO : (1:L)(i,j:nat)
1t j 1)->
(1ift_L i (Lift_L j 1))=

(1ift_L j (lift_L (pred i) 1)).

Definition lift_lift_n_bridge0 : N->Prop :=

[n:N](i,j:nat)

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

1t j i)->
(Lift_N i (1ift_N j n))=

(1ift_N j (lift_N (pred i) n)).

Definition lift_lift_a_bridge0 : A->Prop :=
[a:A] (i, j:nat)
(1t j 1)—>
(1ift_A i (lift_A j a))=

(lift_A j (lift_A (pred i) a)).

Lemma 1ift_lift_n_BridgeO :
((n:N) (1ift_lift_n_bridge0 n))/\

((a:A)(1ift_lift_a_bridge0 a)).

Lemma Lift_Lift_N_BridgeO :
(n:N)(i,j:nat)
(1t j 1)->
(1ift_N i (1ift_N j n))=

(1ift_N j (1lift_N (pred i) n)).

Lemma Lift_Lift_A_BridgeO :
(a:4)(i,j:nat)
(1t j 1)—>
(1ift_A i (1ift_A j a))=

(1ift_A j (lift_A (pred i) a)).

Lemma Lift_Lift_V_Bridgel : (x:V)(i,j:nat)
i=j->

(1ift_V i (Lift_V j x))=(1ift_V (S j) (Lift_V i x)).

Definition 1lift_lift_n_bridgel : N->Prop :=
[n:N](i,j:nat)
i=j->

(1ift N i (1ift_N j n))=(1lift_N (S j) (1ift_N i n)).

Definition lift_lift_a_bridgel : A->Prop :=

136

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES
[a:41(1i,j:nat)
i=j->

(1ift_4 i (Lift_A j a))=(1lift_A (S j) (lift_A i a)).

Lemma lift_lift_n_Bridgel :

((n:N)(1ift_lift_n_bridgel n))/\((a:4) (1lift_lift_a_bridgel a)).

Lemma Lift_Lift_N_Bridgel :
(n:N)(i,j:nat)
i=j->

(1ift_N i (lift_N j n))=(1lift_N (S j) (1ift_N i n)).

Lemma Lift_Lift_A_Bridgel :
(a:4)(i,j:nat)
i=j->

(1ift_A i (lift_A j a))=(1lift_A (S j) (lift_A i a)).

Lemma Lift_Lift_L_Bridgel :(1:L)(i,j:nat)
i=j->

(1ift_L i (lift_L j 1))=(1lift_L (S j) (lift_L i 1)).

Recursive Definition drop_V : nat->V->V :=

j i => (Setifb V (1tb i j) i (pred i)).

Recursive Definition
drop_L : nat->L->L :=
i (vr x) => (vr (drop_V i x)) |
i (app x 11 12) =>
(app (drop_V i x) (drop_L i 11) (drop_L (S i) 12)) |
i (Im 1) => (Im (drop_L (S i) 1)).

Fixpoint
drop_M1 [m:M] : nat->M :=
[i:nat]<M>Case m of
[x:V] [ms:Ms]

(sc (drop_V i x) (drop_Msil ms i))

137

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRULJN INDICES 138

[m’:M]

(lambda (drop_M1 m’ (S 1i)))
end with
drop_Msl [ms:Ms] : nat->Ms :=
[i:nat]<Ms>Case ms of

mnil

[m:M] [ms’ :Ms]
(mcons (drop_M1 m i) (drop_Msi ms’ 1i))

end.

Recursive Definition
drop_M : nat->M->M :=

im=> (drop_M1l m i).

Recursive Definition
drop_Ms : nat->Ms->Ms :=

i ms => (drop_Msi ms i).

Fixpoint
drop_N1 [n:N] : nat->N :=
[i:nat]<N>Case n of
[n’:N]
(lam (drop_N1i n’ (S i)))
[a:4A]
(an (drop_Al a i))
end with
drop_A1 [a:A] : nat->A :=
[i:nat]<A>Case a of
[a’:A][n:N]
(ap (drop_Al a’ i) (drop_Ni n 1i))
[x:V]
(var (drop_V i x))

end.

Recursive Definition

drop_N : nat->N->N :=

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

in => (drop_N1 n i).

Recursive Definition

drop_A :

Lemma

Lemma

Lemma

Lemma

Lemma

Lemma

Lemma

Lemma

nat->A->4 :

i a => (drop_Al a 1i).

DROPM1 :

DROPM2 :

(i:nat)(x:V)(ms:Ms)((drop_M i (sc x ms)) =

(sc (drop_V i x) (drop_Ms i ms))).

(i:nat)(m:M)

((drop_M i (lambda m)) = (lambda (drop_M (S i) m))).

DROPM3 :

DROPM4 :

DROPN1 :

DROPN2 :

DROPN3 :

(i:nat)(drop_Ms i mnil)=mnil.

(i:nat)(m:M) (ms:Ms) ((drop_Ms i (mcons m ms)) =

(mcons (drop_M i m) (drop_Ms i ms))).

(i:nat)(n:N)((drop_N i (lam n)) = (lam (drop_N (S i) n))).

(i:nat)(a:A)((drop_N i (an a)) = (an (drop_A i a))).

(i:nat)(a:A)(n:N)

((drop_A i (ap a n)) = (ap (drop_A i a) (drop_N i n))).

DROPN4 :

Inductive

Occurs_In_V :

(i:nat)(x:V)((drop_A i (var x)) = (var (drop_V i x))).

nat->V->Prop :=

Occurs_in_v : (i,j:nat)i=j->

Inductive

Occurs_In_L :

(Occurs_In_V i j).

nat->L->Prop :=

Occurs_in_vr :

(i:nat) (x:V)

(Occurs_In_V i x)->

139

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

(Occurs_In_L i (vr x)) |
Occurs_in_appl :
(i:nat) (x:V)(11,12:L)
(Occurs_In_V i x)->
(Occurs_In_L i (app x 11 12)) |
Occurs_in_app2 :
(i:nat)(x:V)(11,12:L)
(Occurs_In_ L i 11)->
(Occurs_In_L i (app x 11 12)) |
Occurs_in_app3 :
(i:nat)(x:V)(11,12:L)
(Occurs_In_L (S i) 12)->
(Occurs_In_L i (app x 11 12)) |
Occurs_in_1m :
(i:nat)(1:L)
(Occurs_In_L (S i) 1)->

(Occurs_In_L i (Im 1)).

Mutual Inductive
Occurs_In_M : nat->M->Prop :=
Occurs_in_scl :
(i:nat)(x:V)(ms:Ms)
(Occurs_In_V i x)->
(Occurs_In_M i (sc x ms)) |
Occurs_in_sc2 :
(i:nat) (x:V)(ms:Ms)
(Occurs_In_Ms i ms)->
(Occurs_In_M i (sc x ms)) |
Occurs_in_lambda :
(i:nat)(m:M)
(Occurs_In_M (S i) m)->
(Occurs_In_M i (lambda m))
with
Occurs_In_Ms : nat->Ms->Prop :=
Occurs_in_mconsli :

(i:nat)(m:M) (ms:Ms)

140

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

(Occurs_In_M i m)->
(Occurs_In_Ms i (mcons m ms)) |
Occurs_in_mcons2 :
(i:nat)(m:M) (ms:Ms)
(Occurs_In_Ms i ms)->

(Occurs_In_Ms i (mcons m ms)).

Mutual Inductive
Occurs_In_N : nat->N->Prop :=
Occurs_in_lam :
(i:nat)(n:N)
(Occurs_In_N (S i) n)->
(Occurs_In_N i (lam n)) |
Occurs_in_an :
(i:nat)(a:4)
(Occurs_In_A i a)->
(Occurs_In_N i (an a))
with
Occurs_In_A : nat->A->Prop :=
Occurs_in_apl :
(i:nat)(a:A)(n:N)
(Occurs_In_A i a)->
(Occurs_In_A i (ap a n)) |
Occurs_in_ap2 :
(i:nat)(a:4)(n:N)
(Occurs_In_N i n)->
(Occurs_In_A i (ap a n)) |
Occurs_in_var :
(i:nat)(x:V)
(Occurs_In_V i x)->

(Occurs_In_A i (var x)).

Recursive Definition Occurs_In_V1 : V->V->bool :=

i j => (nategb i j).

Lemma 0IVi_is_0IV1 : (i,x:V)

141

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

(Occurs_In_V i x)->

(Occurs_In_V1 i x)=true.

Lemma OIV1_is_0IV2 : (i:V)(x:V)
(Occurs_In_V1 i x)=true->

(Occurs_In_V i x).

Lemma OIV1_is_0IV3 : (i:V)(x:V)
“(Occurs_In_V i x)->

(Occurs_In_V1 i x)=false.

Lemma OIV1_is_0IV4 : (i:V)(x:V)
(Occurs_In_V1 i x)=false->

“(Occurs_In_V i x).

Definition OIV_compare : V->V->Prop :=

[i:V]1[x:V](Occurs_In_V i x)\/ " (Occurs_In_V i x).

Lemma 0IV_dec :
(i:v)(x:V)

(0IV_compare i x).

Recursive Definition
Occurs_In_L1 : V->L->bool :=
i (vr x) => (Occurs_In_V1 i x) |
i (app x 11 12) =>
(orb (Occurs_In_V1 i x)
(orb (Occurs_In_L1 i 11)
(Occurs_In_L1 (S i) 12))) |

i (Im 1) => (Occurs_In_L1 (S i) 1).

Lemma OIL1_is_OIL1 :
(1:L)(i:V)
(Occurs_In_L i 1)->

(Occurs_In_L1 i 1)=true.

142

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRULJN INDICES 143

Lemma OIL1_is_0IL2 : (1:L)(i:V)
(Occurs_In_L1 i 1)=true->

(Occurs_In_L i 1).

Lemma OIL1_is_0IL3 :
(1:L)(1i:v)
“(Occurs_In_L i 1)->

(Occurs_In_L1 i 1)=false.

Lemma OIL1_is_0IL4 :
(1:1L)(i:V)
(Occurs_In_L1 i 1)=false->

“(Occurs_In_L i 1).

Definition OIL_compare : V->L->Prop :=

[i:V]1[1:L](0ccurs_In_L i 1)\/"(Occurs_In_L i 1).

Lemma 0OIL_dec :
(1:L)(i:V)

(0IL_compare i 1).

Fixpoint
Occurs_In_M2 [m:M] : V->bool :=
[i:V]<bool>Case m of
[x:V] [ms:Ms]
(orb (Occurs_In_V1 i x) (Occurs_In_Ms2 ms i))
[m’:M]
(Occurs_In_M2 m’ (S i))
end with
Occurs_In_Ms2 [ms:Ms] : V->bool :=
[i:VI<bool>Case ms of
false
[m:M] [ms’ :Ms]
(orb (Occurs_In_M2 m i) (Occurs_In_Ms2 ms’ i))

end.

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJIN INDICES 144

Recursive Definition
Occurs_In_M1 : V->M->bool :=

xm => (Occurs_In_M2 m x).

Recursive Definition
Occurs_In_Msl : V->Ms—->bool :=

x ms => (Occurs_In_Ms2 ms x).

Lemma OIM1 : (i,x:V)(ms:Ms)
(Occurs_In_M1 i (sc x ms))
=(orb (Occurs_In_V1 i x)

(Occurs_In_Ms1 i ms)).

Lemma OIM2 : (i:V)(m:M)
(Occurs_In_M1 i (lambda m))=
(Occurs_In_M1 (S i) m).

Lemma OIM3 : (i:V)

(Occurs_In_Ms1 i mnil)=false.

Lemma 0IM4 : (i:V)(m:M) (ms:Ms)
(Occurs_In_Ms1 i (mcons m ms))=
(orb (Occurs_In_M1 i m)

(Occurs_In_Ms1l i ms)).

Definition oiml_is_oiml : M->Prop :=
[m:M](i:V)(Occurs_In_M i m)->

(Occurs_In_M1 i m)=true.

Definition oimsl_is_oimsl : Ms->Prop :=
[ms:Ms](i:V)(Occurs_In_Ms i ms)->

(Occurs_In_Ms1 i ms)=true.

Lemma oiM1_is_oiM1 :
((m:M) (oim1_is_oiml m))/\

((ms:Ms) (oims1_is_oims1 ms)).

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

Lemma OIM1_is_OIM1 : (i:V)(m:M)
(Occurs_In_M i m)->

(Occurs_In_M1 i m)=true.

Lemma OIMs1_is_0IMs1 : (i:V)(ms:Ms)
(Occurs_In_Ms i ms)->

(Occurs_In_Ms1 i ms)=true.

Definition oimil_is_oim2 : M->Prop :=
[m:M](i:V)(Occurs_In_M1 i m)=true->

(Occurs_In_M i m).

Definition oimsl_is_oims2 : Ms->Prop :=
[ms:Ms] (i:V)(Occurs_In_Msl i ms)=true->

(Occurs_In_Ms i ms).

Lemma oiM1_is_oiM2 :
((m:M) (oimi_is_oim2 m))/\

((ms:Ms)(oims1_is_oims2 ms)).

Lemma OIM1_is_0OIM2 : (i:V)(m:M)
(Occurs_In_M1 i m)=true->

(Occurs_In_M i m).

Lemma OIMsi1_is_0IMs2 :
(i:V)(ms:Ms)
(Occurs_In_Ms1 i ms)=true->

(Occurs_In_Ms i ms).

Lemma OIM1_is_0IM3 :
(1:V)(m:M)
“(Occurs_In_M i m)->

(Occurs_In_M1 i m)=false.

Lemma OIMs1_is_Q0IMs3 :

145

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

(i:V)(ms:Ms)
“(Occurs_In_Ms i ms)->

(Occurs_In_Ms1 i ms)=false.

Lemma OIM1_is_0IM4 :
(1:v)(m:M)
(Occurs_In_M1 i m)=false—>

“(Occurs_In_M i m).

Lemma OIMsi1_is_0IMs4 :
(i:V)(ms:Ms)
(Occurs_In_Msl i ms)=false->

“(Occurs_In_Ms i ms).

Definition OIM_compare : V->M->Prop :=

[i:V][m:M](Occurs_In_M i m)\/"(Occurs_In_M i m).

Lemma OIM_dec :
(i:v)(m:M)

(0IM_compare i m).

Definition OIMs_compare : V->Ms->Prop :=

[i:V] [ms:Ms] (Occurs_In_Ms i ms)\/~(Occurs_In_Ms i ms).

Lemma 0IMs_dec :
(i:V)(ms:Ms)

(0IMs_compare i ms).

Fixpoint
Occurs_In_N2 [n:N] : V->bool :=
[i:V]l<bool>Case n of
[n’:N]
(Occurs_In_N2 n’ (S i))
[a:A]
(Occurs_In_A2 a i)

end with

146

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRULIN INDICES 147

Occurs_In_A2 [a:A] : V->bool :=
[i:V]<bool>Case a of
[a’:A][n:N]
(orb (Occurs_In_A2 a’ i) (Occurs_In_N2 n i))
[x:Vv]
(Occurs_In_V1 i x)

end.

Definition Occurs_In_N1 : V->N->bool :

[i:V][n:N](Occurs_In_N2 n i).

Definition Occurs_In_Al1l : V->A->bool :

[i:V][a:A](Occurs_In_A2 a 1i).

Lemma OIN1 : (i:V)(n:N)
(Occurs_In_N1 i (lam n))=

(Occurs_In_N1 (S i) n).

Lemma OIN2 : (i:V)(a:4)
(Occurs_In_N1 i (an a))=

(Occurs_In_A1 i a).

Lemma OIN3 : (i:V)(a:A)(n:N)
(Occurs_In_A1 i (ap a n))=

(orb (Occurs_In_A1 i a) (Occurs_In_N1 i n)).

Lemma 0IN4 : (i,x:V)
(Occurs_In_A1 i (var x))=

(Occurs_In_V1 i x).

Definition oinl_is_oinl : N->Prop :=
[n:N](i:Vv)
(Occurs_In_N i n)->

(Occurs_In_N1 i n)=true.

Definition oial_is_oial : A->Prop :=

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRULJN INDICES 148

[a:4](i:V)
(Occurs_In_4& i a)->

(Occurs_In_A1l i a)=true.

Lemma oiN1_is_oiN1 :
((n:N)(oinl_is_oinl n))/\

((a:4)(oial_is_oial a)).

Lemma OINi1_is_OIN1 :
(n:N)(i:V)
(Occurs_In_N i n)->

(Occurs_In_N1 i n)=true.

Lemma OIA1_is_O0OIA1 :
(a:p)(i:V)
(Occurs_In_A i a)->

(Occurs_In_A1 i a)=true.

Definition oini_is_oin2 : N->Prop :=
[n:N](i:V)(Occurs_In_N1 i n)=true->

(Occurs_In_N i n).

Definition oial_is_oia2 : A->Prop :=
[a:A]1(i:V)(Occurs_In_A1l i a)=true->

(Occurs_In_A i a).

Lemma oiN1_is_oiN2 :
((n:N)(oini_is_oin2 n))/\

((a:A)(oial_is_oia2 a)).

Lemma OIN1_is_O0IN2 :
(n:N)(i:V)
(Occurs_In_N1 i n)=true->

(Occurs_In_N i n).

Lemma 0OIA1_is_0IA2 :

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRULJN INDICES 149

(a:pA)(i:V)
(Occurs_In_A1l i a)=true->

(Occurs_In_A i a).

Lemma OIN1_is_O0OIN3 :
(i:V)(n:N)
“(Occurs_In_ N i n)->

(Occurs_In_N1 i n)=false.

Lemma OIA1_is_0IA3 :
(i:vV)(a:4)
“(Occurs_In_A i a)->

(Occurs_In_A1 i a)=false.

Lemma OIN1_is_0IN4 :
(i:V)(n:N)
(Occurs_In_N1 i n)=false->

“(Occurs_In_N i n).

Lemma OIA1_is_0IA4 :
(i:vV)(a:4)
(Occurs_In_A1 i a)=false->

“(Occurs_In_A i a).

Definition OIN_compare : V->N->Prop :=

[1i:V][n:N](Occurs_In_N i n)\/~(Occurs_In_N i n).

Lemma OIN_dec :
(i:V)(n:N)

(Occurs_In_N i n)\/"(Occurs_In_N i n).

Definition OIA_compare : V->A->Prop :=

[i:V][a:A](Occurs_In_A i a)\/"(Occurs_In_A i a).

Lemma OIA_dec :
(i:v)(a:4)

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

(Occurs_In_A i a)\/"(Occurs_In_A i a).

Lemma NOI_Lift_V_BridgeO :
(x,1i:V)
“(Occurs_In_V i x)->
(lift_V i x)=

(1ift_V (S i) x).

Definition NOI_lift_n_bridge0 : N->Prop :=
[n:N](i:V)
“(Occurs_In_N i n)->
(1ift_N i n)=
(1ift_N (S i) n).

Definition NOI_lift_a_bridge0 : A->Prop :=
[a:A](i:V)
“(Occurs_In_A i a)->
(1ift_A i a)=

(1ift_A (S i) a).

Lemma NOI_lift_n_BridgeO :
((n:N)(NOI_lift_n_bridge0 n))/\
((a:A)(NOI_lift_a_bridge0 a)).

Lemma NOI_Lift_N_BridgeO :
(n:N)(i:V)
“(Occurs_In_N i n)->
(lift_N i n)=
(1ift_N (S i) n).

Lemma NOI_Lift_A_BridgeO :
(a:p)(i:V)
“(Occurs_In_A i a)->
(lift_A i a)=

(1ift_A (S i) a).

150

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRULJN INDICES 151

Lemma NOI_Lift_L_BridgeO :
(1:L)(i:V)
“(Occurs_In_L i 1)->
(1ift_L i 1)=
(Lift_L (s 1) 1).

Lemma NOI_Drop_V_BridgeO :
(x:V)(1,j:V)
(1t 1 j)->
“(Occurs_In_V (S j) x)->

“(Occurs_In_V j (drop_V i x)).

Definition noi_drop_m_bridge0 : M->Prop :=
[m:MI(1,j:V)
(1t 1 j)
->"(0ccurs_In_M (S j) m)

->“(0ccurs_In_M j (drop_M i m)).

Definition noi_drop_ms_bridge0 : Ms->Prop :=
[ms:Ms](i,j:V)
(1t 1 j)
->*(0ccurs_In_Ms (S j) ms)

->"(0ccurs_In_Ms j (drop_Ms i ms)).

Lemma noi_drop_m_Bridge0 :
((m:M) (noi_drop_m_bridge0 m))/\

((ms:Ms) (noi_drop_ms_bridge0 ms)).

Lemma NOI_Drop_M_BridgeO :
(m:M)(i,j:V)
(1t 1 j)
->"(Occurs_In_M (S j) m)

->"(Occurs_In_M j (drop_M i m)).

Lemma NOI_Drop_Ms_BridgeO :
(ms:Ms)(i,j:V)

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

(1t i j)
->~"(0ccurs_In_Ms (S j) ms)

->"(Occurs_In_Ms j (drop_Ms i ms)).

Lemma NOI_Lift_V : (x:V)(i:nat)

“(Occurs_In_V i (1lift_V i x)).

Lemma NOI_Lift_V2 :(x:V)(i,j:nat)
“(Occurs_In_V (S i) x)->
“(Occurs_In_V i x)->

“(Occurs_In_V (S i) (1ift_V j x)).

Definition noi_lift_m : M->Prop :=
[m:M] (i:nat)

“(Occurs_In_M i (lift_M i m)).

Definition noi_lift_ms : Ms->Prop :
[ms:Ms] (i:nat)

“(Occurs_In_Ms i (lift_Ms i ms)).

Lemma NOI_lift_m :
((m:M)(noi_lift_m m))/\

((ms:Ms) (noi_lift_ms ms)).

Lemma NOI_Lift_M :
(m:M) (i:nat)

“(Occurs_In_M i (lift_M i m)).

Lemma NOI_Lift_Ms :
(ms:Ms) (i:nat)

“(Occurs_In_Ms i (lift_Ms i ms)).

Definition noi_lift_ml : M->Prop :=
[m:M] (i:nat)(j:nat)
“(Occurs_In_M (S i) m)->

“(Occurs_In_M i m)->

152

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

“(Occurs_In_M (S i) (1ift_M j m)).

Definition noi_lift_msl : Ms->Prop :=
[ms:Ms] (i:nat) (j:nat)
“(Occurs_In_Ms (S i) ms)->
“(Occurs_In_Ms i ms)->

“(Occurs_In_Ms (S i) (lift_Ms j ms)).

Lemma NOI_lift_mil :
((m:M) (noi_lift_mi1 m))/\

((ms:Ms)(noi_lift_ms1 ms)).

Lemma NOI_Lift_M1 :
(m:M) (i,j:nat)
“(Occurs_In_M (S i) m)->
“(Occurs_In_M i m)->

“(Occurs_In_M (S i) (lift_M j m)).

Lemma NOI_Lift_Msi1 :
(ms:Ms)(i,j:nat)
“(Occurs_In_Ms (S i) ms)->
“(Occurs_In_Ms i ms)->

“(Occurs_In_Ms (S i) (lift_Ms j ms)).

Lemma NOI_Lift_L : (1:L)(i:nat)

“(Occurs_In_L i (1lift_L i 1)).

Lemma NOI_Lift_V3 : (x:V)(i,j:nat)
(1t j i)->
“(Occurs_In_V i x)->

“(Occurs_In_V (S i) (1ift_V j x)).

Lemma NOI_Lift_V4 : (x:V)(i,j:nat)
j=i->
“(Occurs_In_V i x)->

“(Occurs_In_V (S i) (lift_V j x)).

153

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJIN INDICES 154

Fixpoint MsubstVMV1 [m:M] : V->M->V->M :=
[x:V][m’:M][i:V]<M>Case m of
[z:V] [ms:Ms]
(Setifb M (nategb i z) (sc x (mcons m’ (MssubstVMVi ms x m’ z)))
(sc (drop_V i z) (MssubstVMVi ms x m’ 1i)))
[m’°:M]
(lambda (MsubstVMVi m’’ (lift_V 0 x) (1ift_M 0 m’) (S 1i)))
end with
MssubstVMV1 [ms:Ms] : V->M->V->Ms :=
[x:V][m’:M] [i:V]<Ms>Case ms of
mnil
[m’>’:M] [ms’ :Ms]
(mcons (MsubstVMV1 m’’ x m’ i) (MssubstVMV1 ms’ x m’ i))

end.

Recursive Definition
MsubstVMV : V->M->V->M->M :=

xmim’> => (MsubstVMVi m’ x m 1i).

Recursive Definition
MssubstVMV : V->M->V->Ms->Ms :=

xmims => (MssubstVMVi ms x m i).

Lemma Drop_Lift_V :
(x:V)(i:nat)

(drop_V i (1ift_V i x))=x.

Definition drop_lift_m : M->Prop :=

[m:M] (i:nat)(drop_ M i (1ift_M i m))=m.

Definition drop_lift_ms : Ms->Prop :=

[ms:Ms](i:nat)(drop_Ms i (lift_Ms i ms))=ms.

Lemma drop_lift_M :
((m:M) (drop_lift_m m))/\((ms:Ms) (drop_lift_ms ms)).

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRULJN INDICES 155

Lemma Drop_Lift_M : (i:nat)(m:M)(drop_M i (1lift_M i m))=m.

Lemma Drop_Lift_Ms : (i:nat)(ms:Ms)(drop_Ms i (lift_Ms i ms))=ms.

Lemma MSVMV1 :
(x:V)(m:M) (y,z:V) (ms:Ms)
(MsubstVMV x m y (sc z ms)) =
(Setifb M
(nategb y z)
(sc x (mcons m (MssubstVMV x m z ms)))

(sc (drop_V y z) (MssubstVMV x m y ms))).

Lemma MSVMV2 : (x:V)(m:M)(m’:M)(y:V)
(MsubstVMV x m y (lambda m’)) =
(lambda (MsubstVMV (1ift_V 0 x) (1ift_M O m) (S y) m’)).

Lemma MSVMV3 : (x:V)(m:M)(y:V)((MssubstVMV x m y mnil) = mnil).

Lemma MSVMV4 : (x:V)(m:M)(y:V)(m’:M)(ms:Ms)
((MssubstVMV x m y (mcons m’ ms)) =
(mcons (MsubstVMV x m y m’)
(MssubstVMV x m y ms))).

Lemma Lift_Drop_V :
(x:V)(i:nat)
“(Occurs_In_V i x)->

(1ift_V i (drop_V i x))=x.

Definition lift_drop_m : M->Prop :=
[m:M] (i:nat)
“(Occurs_In_M i m)->

(1ift_M i (drop_M i m))=m.

Definition lift_drop_ms : Ms->Prop :=

[ms:Ms] (i:nat)

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

“(Occurs_In_Ms i ms)—>

(1ift_Ms i (drop_Ms i ms))=ms.

Lemma lift_drop_M :
((m:M) (Llift_drop_m m))/\((ms:Ms) (1ift_drop_ms ms)).

Lemma Lift_Drop_M :
(i:nat) (m:M)
“(Occurs_In_M i m)->

(1ift_M i (drop_M i m))=m.

Lemma Lift_Drop_Ms :
(i:nat) (ms:Ms)
“(Occurs_In_Ms i ms)->

(1ift_Ms i (drop_Ms i ms))=ms.

Recursive Definition
VsubstAV : A->V->V->A :=

a i j => (Setifb A (nategb i j) a (var (drop_V i j))).

Fixpoint
NsubstAV1 [n:N]: A->nat->N :=
[a:A][i:nat]<N>Case n of
[n’:N]
(lam (NsubstAV1 n’ (1ift_A 0 a) (S 1i)))
[a’:4]
(an (AsubstAV1 a’ a i))
end with
AsubstAV1 [a:A] : A->nat->A :=
[a’:A][i:nat]<A>Case a of
[a’’:A][n:N]
(ap (AsubstAV1l a’’ a’ i) (NsubstAVi n a’ i))
[x:V]
(VsubstAV a’ i x)

end.

156

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

Recursive Definition
NsubstAV : A->V->N->N :=

a in => (NsubstAVlin a i).
Recursive Definition
AsubstAV : A->V->A->A :=

a i a’ => (AsubstAV1l a’ a 1i).

Lemma NSAV1 : (a:4)(i:nat)(n:N)

((NsubstAV a i (lam n))

(lam (NsubstAV (1lift_A 0 a) (S i) n))).

Lemma NSAV2 : (a:A4)(i:nat)(a’:4)

((NsubstAV a i (an a’))

(an (AsubstAV a i a’))).

Lemma NSAV3 : (a:A)(i:nat)(a’:4)(n:N)
((AsubstAV a i (ap a’ n)) =

(ap (AsubstAV a i a’) (NsubstAV a i n))).

Lemma NSAV4 : (a:A)(i:nat)(x:V)
((AsubstAV a i (var x)) =
(VsubstAV a i x)).

Recursive Definition
phi : L -> N :=
(vr x) => (an (var x)) |
(app x 11 12) =>
(NsubstAV (ap (var x) (phi 11)) 0 (phi 12)) |
(Im 1) => (lam (phi 1)).

Recursive Definition
phibar : L->M :=
(vr x) => (sc x mnil) |
(app x 11 12) =>
(MsubstVMV x (phibar 11) 0 (phibar 12)) |

157

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

(Im 1) => (lambda (phibar 1)).

Definition lift_psi_bridge : N->Prop :=

[n:N](i:nat)(lift_M i (psi n)) = (psi (lift_N i n)).

Definition lift_psi’_bridge : A->Prop :=
[a:A] (ms:Ms) (i:nat)(lift_ M i (psi’ a ms))=

(psi’ (lift_A i a) (lift_Ms i ms)).

Lemma Lift_psi_Bridge :
((n:N)(lift_psi_bridge n))/\
((a:A)(lift_psi’_bridge a)).

Lemma Lift_Psi_Bridge : (n:N)(i:nat)

(1ift_M i (psi n)) = (psi (1ift_N i n)).

Lemma Lift_Psi’_Bridge : (a:A)(ms:Ms)(i:nat)

(1ift_M i (psi’ a ms))=(psi’ (lift_A i a) (1lift_Ms i ms)).

Lemma Lift_Theta_Bridge :

(m:M)(i:nat) (1ift_N i (theta m)) = (theta (lift_M i m)).

Lemma Lift_Theta’_Bridge : (a:A)(ms:Ms)(i:nat)

(1ift_N i (theta’ a ms))=(theta’ (lift_A i a) (lift_Ms i ms)).

Lemma Lift_Lift_M_Bridge :
(m:M) (i,j:nat)
(1t i j)->
(1ift_ M i (lift_M j m))=

(1ift_M (S j) (1ift_M i m)).

Lemma Lift_Lift_Ms_Bridge :
(ms:Ms) (i, j:nat)
(1t i j)—>
(1ift_Ms i (1ift_Ms j ms))=

(1ift_Ms (S j) (lift_Ms i ms)).

158

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRULJN INDICES 159

Lemma Lift_Lift_M_BridgeO :
(m:M) (i,j:nat)
(1t j i)->
(1ift_M i (1ift_M j m))=
(1ift_M j (1ift_M (pred i) m)).

Lemma Lift_Lift_Ms_BridgeO :
(ms:Ms) (i, j:nat)
(1t § i)->
(1ift_Ms i (lift_Ms j ms))=
(1ift_Ms j (lift_Ms (pred i) ms)).

Lemma Lift_Lift_M_Bridgel :
(m:M) (i,j:nat)
i=j->
(1ift_ M i (1ift_M j m))=
(1ift_ M (S j) (1ift_M i m)).

Lemma Lift_Lift_Ms_Bridgel :
(ms:Ms) (i, j:nat)
i=j->
(1ift_Ms i (1ift_Ms j ms))=
(1ift_Ms (S j) (lift_Ms i ms)).
Definition msub_psi_bridge : N->Prop :=
[n2:N] (n1:N)(x,y:V)
(MsubstVMV x (psi n1) y (psi n2))=
(psi (NsubstAV (ap (var x) nl) y n2)).
Definition msub_psi’_bridge : A->Prop :=
[a:A](x:V)(n:N)(y:V)(ms:Ms)

(MsubstVMV x (psi n) y (psi’ a ms))=
(psi’ (AsubstAV (ap (var x) n) y a) (MssubstVMV x (psi n) y ms)).

Lemma Msub_psi_bridge :

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRULJN INDICES 160

((n:N) (msub_psi_bridge n))/\((a:4)(msub_psi’_bridge a)).

Lemma Msub_Psi_Bridge :
(n2:N)(n1:N)(x,y:V)
(MsubstVMV x (psi nl) y (psi n2))=
(psi (NsubstAV (ap (var x) ni) y n2)).

Lemma Msub_Psi’_Bridge :
(a:4) (x:V) (n:N) (y:V) (ms:Ms)
(MsubstVMV x (psi n) y (psi’ a ms))=

(psi’ (AsubstAV (ap (var x) n) y a) (MssubstVMV x (psi n) y ms)).

Lemma Nsub_Theta_Bridge :
(x:V) (m1:M)(y:V)(m2:M)
(NsubstAV (ap (var x) (theta m1)) y (theta m2))
=(theta (MsubstVMV x ml y m2)).

Definition theta_drop_m_bridge : M->Prop :=

[m:M] (i:nat) (theta (drop_M i m))=(drop_N i (theta m)).

Definition theta’_drop_ms_bridge : Ms->Prop :=
[ms:Ms](a:4)(i:nat)

(theta’ (drop_A i a) (drop_Ms i ms))=(drop_N i (theta’ a ms)).

Lemma theta_drop_M_bridge :
((m:M) (theta_drop_m_bridge m))/\

((ms:Ms) (theta’ _drop_ms_bridge ms)).

Lemma Theta_Drop_M_Bridge :

(m:M) (i:nat) (theta (drop_M i m))=(drop_N i (theta m)).
Lemma Theta’_Drop_Ms_Bridge :
(ms:Ms) (a:A)(i:nat)

(theta’ (drop_A i a) (drop_Ms i ms))=(drop_N i (theta’ a ms)).

Lemma Psi_Drop_N_Bridge :

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

Lemma

Lemma

Lemma

Lemma

Lemma

Lemma

Lemma

(n:N)(i:nat)

(psi (drop_N i n))=(drop_M i (psi n)).

Psi’_Drop_A_Bridge :
(a:4)(ms:Ms)(i:nat)

(psi’ (drop_A i a) (drop_Ms i ms))=(drop_M i (psi’ a ms)).

thetaphibarphi : (1:L)(theta (phibar 1))=(phi 1).

psiphiphibar : (1:L)(psi (phi 1))=(phibar 1).

OI_Lift_Vi_1:
(x:V)(i,j:nat)
(1t 1 j)->

(Occurs_In_V1 i (1ift_V j x))=(Occurs_In_V1 i x).

0I_Lift_Vi_2:
(x:V)(i,j:nat)
i=j->

(Occurs_In_V1 i (1ift_V j x))=false.

OI_Lift_V1_3 :
(x:V)(i,j:nat)
(1t j 1)—>
(Occurs_In_V1 (S i) (1ift_V j x))=

(Occurs_In_V1 i x).

OI_Lift_Vi_4 : (x:V)(i,j:nat)
(1t j i)->
(Occurs_In_V1 i (1ift_V j x))=

(Occurs_In_V1 (pred i) x).

Definition oi_lift_mi_1: M->Prop :=

[m:M] (i, j:nat)

(1t i j)->(Occurs_In_M1 i (1lift_M j m))=(Occurs_In_M1 i m).

161

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

Definition oi_lift_msi_1: Ms->Prop :=
[ms:Ms](i,j:nat)
(1t i j)->

(Occurs_In_Ms1 i (lift_Ms j ms))=(Occurs_In_Msl i ms).

Lemma oi_lift_Mi1_1 :
((m:M)(oi_lift_mi_1 m))/\

((ms:Ms) (oi_lift_msi_1 ms)).

Lemma OI_Lift_M1_1:
(m:M) (i,j:nat)
(1t 1 j)->

(Occurs_In_M1 i (1ift_M j m))=(Occurs_In_M1 i m).

Lemma OI_Lift_Ms1_1:
(ms:Ms) (i, j:nat)
(1t i j)—>

(Occurs_In_Ms1 i (1lift_Ms j ms))=(Occurs_In_Msi1 i ms).

Definition oi_lift_mi_2: M->Prop :=
[m:M](1i,j:nat)

i=j->(0ccurs_In_M1 i (lift_M j m))=false.

Definition oi_lift_ms1_2: Ms->Prop :=
[ms:Ms](i,j:nat)

i=j->(0ccurs_In_Ms1 i (lift_Ms j ms))=false.

Lemma oi_lift_M1_2 :
((m:M)(oi_lift_mi_2 m))/\

((ms:Ms)(oi_lift_ms1_2 ms)).

Lemma OI_Lift_M1_2:
(m:M) (i,j:nat)
i=j—>

(Occurs_In_M1 i (lift_M j m))=false.

162

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

Lemma OI_Lift_Ms1_2:
(ms:Ms) (i, j:nat)
i=j->

(Occurs_In_Ms1 i (lift_Ms j ms))=false.

Definition oi_lift_mi_3: M->Prop :=
[m:M] (i, j:nat)
(1t j 1)—>
(Occurs_In_M1 (S i) (lift_M j m))=(Occurs_In_M1 i m).

Definition oi_lift_ms1_3: Ms->Prop :=
[ms:Ms](i,j:nat)
(1t j 1)->

(Occurs_In_Ms1 (S i) (1ift_Ms j ms))=(Occurs_In_Msl i ms).

Lemma oi_lift_Mi1_3 :
((m:M)(oi_lift_mi1_3 m))/\

((ms:Ms)(oi_lift_ms1_3 ms)).

Lemma OI_Lift_M1_3:
(m:M) (i,j:nat)
(1t j i)->
(Occurs_In_M1 (S i) (1lift_M j m))=(Occurs_In_M1 i m).

Lemma OI_Lift_Ms1_3:
(ms:Ms) (i, j:nat)
(1t j i)->

(Occurs_In_Ms1 (S i) (1ift_Ms j ms))=(Occurs_In_Msi i ms).

Definition oi_lift_mi_4: M->Prop :=
[m:M](i,j:nat)
(1t j 1)->

(Occurs_In_M1 i (1ift_M j m))=(Occurs_In_M1 (pred i) m).

Definition oi_lift_ms1_4: Ms->Prop :=

[ms:Ms] (i, j:nat)

163

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

(1t § i)->
(Occurs_In_Ms1 i (lift_Ms j ms))=

(Occurs_In_Ms1l (pred i) ms).

Lemma oi_lift_M1_4 :
((m:M)(oi_lift_mi1_4 m))/\

((ms:Ms) (oi_lift_ms1_4 ms)).

Lemma OI_Lift_M1_4 :
(m:M) (i,j:nat)
(1t j i)->

(Occurs_In_M1 i (1ift_M j m))=(Occurs_In_M1 (pred i) m).

Lemma OI_Lift_Ms1_4 :
(ms:Ms) (i, j:nat)
(1t j 1)—>
(Occurs_In_Ms1 i (1lift_Ms j ms))=

(Occurs_In_Ms1 (pred i) ms).

Definition oi_lift_ni_1: N->Prop :=
[n:N](i,j:nat)

(1t i j)->(Occurs_In_N1 i (lift_N j n))=(Occurs_In_N1 i n).

Definition oi_lift_al_1: A->Prop :=
[a:A](4i,j:nat)

(1t i j)->(Occurs_In_A1 i (lift_A j a))=(Occurs_In_Al i a).

Lemma oi_lift_Ni1_1 :
((n:N)(oi_lift_ni1_1 n))/\

((a:p)(oi_lift_al_1 a)).

Lemma OI_Lift_Ni_1:
(n:N)(i,j:nat)
(1t i j)—>

(Occurs_In_N1 i (1ift_N j n))=(Occurs_In_Ni i n).

164

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

Lemma OI_Lift_A1_1:
(a:4)(i,j:nat)
(1t i j)->

(Occurs_In_A1 i (1ift_A j a))=(Occurs_In_Al i a).

Definition oi_lift_ni1_2 : N->Prop :=
[n:N](i,j:nat)

i=j->(0ccurs_In_N1 i (1ift_N j n))=false.

Definition oi_lift_al_2 : A->Prop :=
[a:41(i,j:nat)

i=j->(0ccurs_In_A1 i (lift_A j a))=false.

Lemma oi_lift_N1_2 :
((n:N)(oi_lift_ni_2 n))/\
((a:A)(oi_lift_al_2 a)).

Lemma OI_Lift_Ni_2:
(n:N)(i,j:nat)
i=j->

(Occurs_In_N1 i (1ift_N j n))=false.

Lemma OI_Lift_A1_2:
(a:A)(i,j:nat)
i=j->

(Occurs_In_A1 i (lift_A j a))=false.

Definition oi_lift_ni_3: N->Prop :=
[n:N](i,j:nat)
(1t j 1)->

(Occurs_In_N1 (S i) (1ift_N j n))=(Occurs_In_N1 i n).

Definition oi_lift_al_3: A->Prop :=
[a:A] (i, j:nat)
(1t j 1)—>

(Occurs_In_A1 (S i) (1lift_A j a))=(Occurs_In_A1l i a).

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

Lemma oi_lift_N1_3 :
((n:N)(oi_lift_n1_3 n))/\

((a:p)(oi_lift_al_3 a)).

Lemma OI_Lift_N1_3 :
(n:N)(i,j:nat)
(1t j 1)—>

(Occurs_In_N1 (S i) (1ift_N j n))=(Occurs_In_N1 i n).

Lemma OI_Lift_A1_3 :
(a:4)(i,j:nat)
(1t j 1)->

(Occurs_In_A1 (S i) (lift_A j a))=(Occurs_In_Al i a).

Definition oi_lift_ni_4: N->Prop :=
[n:N](i,j:nat)
(1t j 1)—>

(Occurs_In_N1 i (1ift_N j n))=(Occurs_In_Ni (pred i) n).

Definition oi_lift_al_4: A->Prop :=
[a:41(i,j:nat)
(1t j 1)—>

(Occurs_In_A1 i (lift_A j a))=(Occurs_In_Al (pred i) a).

Lemma oi_lift_N1_4 :
((n:N)(oi_lift_n1_4 n))/\

((a:A)(oi_lift_al_4 a)).

Lemma OI_Lift_N1_4 :
(n:N)(i,j:nat)
(1t j 1)->

(Occurs_In_N1 i (1ift_N j n))=(Occurs_In_N1 (pred i) n).

Lemma OI_Lift_A1_4 :

(a:A)(i,j:nat)

166

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

(1t j i)->

(Occurs_In_A1 i (1ift_A j a))=(Occurs_In_A1l (pred i) a).

Lemma OI_Lift_L1_4 :
(1:L)(i,j:nat)
(1t j 1)—>
(Occurs_In_L1 i (lift_L j 1))=

(Occurs_In_L1 (pred i) 1).

Definition noi_msub_b_bridge : M->Prop :=
[m:M](x:V)(m1:M)(i:nat)
“(Occurs_In_M i m)->

(MsubstVMV x m1 i m)=(drop_M i m).

Definition noi_mssub_b_bridge : Ms->Prop :=
[ms:Ms](x:V) (m1:M)(i:nat)
~“(Occurs_In_Ms i ms)->

(MssubstVMV x m1 i ms)=(drop_Ms i ms).

Lemma noi_msub_b_Bridge :
((m:M) (noi_msub_b_bridge m))/\

((ms:Ms) (noi_mssub_b_bridge ms)).

Lemma NOI_Msub_Bridge :
(m:M)(x:V)(m1:M)(i:nat)
“(Occurs_In_M i m)->

(MsubstVMV x m1 i m)=(drop_M i m).

Lemma NOI_Mssub_Bridge :
(ms:Ms) (x:V)(m1:M) (i:nat)
“(Occurs_In_Ms i ms)->

(MssubstVMV x m1 i ms)=(drop_Ms i ms).

Lemma Lift_Drop_V_Bridgel : (x:V)(i,j:nat)
(1t j 1)—>

“(Occurs_In_V j x)->

167

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

(1ift_V i (drop_V j x))=
(drop_V j (1ift_V (S i) x)).

Definition lift_drop_n_bridgel : N->Prop :=
[n:N](i,j:nat)
(1t j 1)—>
“(Occurs_In_N j n)->
(1ift_N i (drop_N j n))=
(drop_N j (1ift_N (S i) n)).

Definition 1ift_drop_a_bridgel : A->Prop :=
[a:4]1(i,j:nat)
(1t j i1)->
“(Occurs_In_A j a)->
(1ift_4 i (drop_A j a))=
(drop_A j (1lift_A (S i) a)).

Lemma lift_drop_n_Bridgel :

((n:N)(1ift_drop_n_bridgel n))/\((a:4) (lift_drop_a_bridgel a)).

Lemma Lift_Drop_N_Bridgel :
(n:N)(i,j:nat)
(1t j 1)—>
“(Occurs_In_N j n)->
(1ift_N i (drop_N j n))=
(drop_N j (1ift_N (S i) n)).

Lemma Lift_Drop_A_Bridgeil :
(a:4)(i,j:nat)
(1t j i1)->
“(Occurs_In_A j a)->
(1ift_4 i (drop_A j a))=
(drop_4 j (1ift_A (S i) a)).

Lemma Drop_Lift_V_Bridgel :

(x:V)(i,j:nat)

168

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

“(Occurs_In_V i x)->
(1t j (S i))->
(drop_V (S i) (1ift_V j x))=
(1ift_V j (drop_V i x)).
Definition drop_lift_n_bridgel : N->Prop :=
[n:N] (i, j:nat)
“(Occurs_In_ N i n)->
(1t j (8 i))->
(drop_N (S i) (1ift_N j n))=
(1ift_N j (drop_N i n)).
Definition drop_lift_a_bridgel : A->Prop :=
[a:4]1(i,j:nat)
“(Occurs_In_A i a)->
(1t j (s 1))=->
(drop_4 (S i) (1ift_A j a))=

(1ift_A4 j (drop_A i a)).

Lemma drop_lift_n_Bridgel :
((n:N)(drop_lift_n_bridgel n))/\

((a:A)(drop_lift_a_bridgel a)).

Lemma Drop_Lift_N_Bridgel :
(n:N)(i,j:nat)
“(Occurs_In_N i n)->
(1t j (8 i))->
(drop_N (S i) (1ift_N j n))=

(1ift_N j (drop_N i n)).

Lemma Drop_Lift_A_Bridgel :
(a:4)(i,j:nat)
“(Occurs_In_A i a)->
(1t j (s i))—>
(drop_A (S i) (1lift_A j a))=

(1ift_A j (drop_A i a)).

169

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

Lemma Lift_Vsub_BridgeO :
(x:V)(i,j:nat)(a:4)
(1t i j)=->
(lift_A j (VsubstAV a i x))=

(VsubstAV (lift_A j a) i (lift_V (S j) x)).

Definition lift_nsub_b_bridge0 : N->Prop :=
[n:N](i,j:nat)(a:4)
(1t i j)->
(1ift_N j (NsubstAV a i n))=

(NsubstAV (lift_A j a) i (1ift_N (S j) n)).

Definition 1lift_asub_b_bridge0 : A->Prop :=
[a:4](i,j:nat)(al:4)
(1t i j)—>
(1ift_A j (AsubstAV al i a))=

(AsubstAV (lift_A j al) i (1ift_A (S j) a)).

Lemma 1lift_nsub_b_Bridge0 :

((n:N)(1lift_nsub_b_bridge0 n))/\ ((a:A)(lift_asub_b_bridged a)).

Lemma Lift_Nsub_BridgeO :
(n:N)(i,j:nat)(a:4)
(1t i j)—>
(1ift_N j (NsubstAV a i n))=
(NsubstAV (lift_A j a) i (1ift_N (S j) n)).

Lemma Lift_Asub_BridgeO :
(a:4)(i,j:nat)(al:A)
(1t 1 j)->
(1ift_A j (AsubstAV al i a))=

(AsubstAV (lift_A j al) i (Lift_A (S j) a)).

Lemma Lift_Msub_BridgeO :

(x:V)(m,m0:M) (i,j:nat)

170

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

(1t 1 j)->
(1ift_M j (MsubstVMV x m i m0))=

(MsubstVMV (1ift_V j x) (1ift_M j m) i (1ift_M (S j) m0)).

Lemma Lift_Mssub_Bridge0 :
(x:V)(m:M) (ms:Ms) (i, j:nat)
(1t i j)—>

(1ift_Ms j (MssubstVMV x m i ms))=

(MssubstVMV (1ift_V j x) (1ift_M j m) i (lift_Ms (S j) ms)).

Definition lift_msub_bridge2 : M->Prop :=
[m:M](x,y:V) (mi:M)
(MsubstVMV x m1 (S y) (Lift_M y (lift_M (S y) m)))=
(MsubstVMV x m1 y (Lift_M (S (S y)) (lift_M (S y) m))).

Definition lift_mssub_bridge2 : Ms—->Prop :=
[ms:Ms](x,y:V)(mi:M)
(MssubstVMV x m1 (S y) (lift_Ms y (lift_Ms (S y) ms)))=
(MssubstVMV x m1 y (lift_Ms (S (S y)) (lift_Ms (S y) ms))).

Lemma Lift_msub_bridge2 :
((m:M) (1ift_msub_bridge2 m))/\
((ms:Ms) (1ift_mssub_bridge2 ms)).

Lemma Lift_Msub_Bridge2 :
(x:V) (m1:M) (y:V) (m:M)
(MsubstVMV x m1 (S y) (lift_M y (1ift_M (S y) m)))=
(MsubstVMV x m1 y (1ift_M (S (S y)) (Lift_M (S y) m))).

Lemma Lift_Mssub_Bridge2 :
(x:V)(m1:M)(y:V)(ms:Ms)
(MssubstVMV x m1 (S y) (lift_Ms y (lift_Ms (S y) ms)))=
(MssubstVMV x m1 y (lift_Ms (S (S y)) (lift_Ms (S y) ms))).

Lemma Lift_Vsub_Bridgel :
(x:V)(i,j:nat)(a:4)

171

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

i=j->
(1ift_A j (VsubstAV a i x))=

(VsubstAV (lift_A j a) i (Lift_V (S j) x)).

Lemma Lift_Vsub_Bridge2 :
(x:V)(i,j:nat)(a:4)
(1t j 1)—>
(lift_A j (VsubstAV a i x))=
(VsubstAV (lift_A j a) (S i) (1ift_V j x)).

Definition lift_nsub_b_bridgel : N->Prop :=
[n:N](1,j:nat)(a:4)
i=j->
(1ift_N j (NsubstAV a i n))=

(NsubstAV (lift_A j a) i (1ift_N (S j) n)).

Definition lift_asub_b_bridgel : A->Prop :=
[a:A]1(4i,j:nat)(al:4)
i=j->
(1ift_A j (AsubstAV al i a))=

(AsubstAV (lift_A j al) i (lift_A (S j) a)).

Lemma lift_nsub_b_Bridgel :

((n:N)(1ift_nsub_b_bridgel n))/\ ((a:A)(lift_asub_b_bridgel a)).

Lemma Lift_Nsub_Bridgel
(n:N)(i,j:nat)(a:4)
i=j->
(1ift_N j (NsubstAV a i n))=

(NsubstAV (lift_A j a) i (1ift_N (S j) n)).

Lemma Lift_Asub_Bridgel
(a:4)(i,j:nat)(al:A)
i=j->
(1ift_A j (AsubstAV al i a))=

(AsubstAV (lift_A j al) i (1ift_A (S j) a)).

172

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRULJN INDICES 173

Definition lift_nsub_b_bridge2 : N->Prop :=
[n:N](i,j:nat)(a:4)
(1t j i)->
(1ift_N j (NsubstAV a i n))=
(NsubstAV (1lift_A j a) (S i) (1ift_N j n)).

Definition lift_asub_b_bridge2 : A->Prop :=
[a:41(i,j:nat)(al:4)
(1t j i)->
(1ift_A j (AsubstAV al i a))=
(AsubstAV (lift_A j al) (S i) (1ift_4 j a)).

Lemma 1ift_nsub_b_Bridge2 :
((n:N) (1ift_nsub_b_bridge2 n))/\ ((a:4)(1lift_asub_b_bridge2 a)).

Lemma Lift_Nsub_Bridge2 :
(n:N)(i,j:nat)(a:4)
(1t j 1)—>
(1ift_N j (NsubstAV a i n))=
(NsubstAV (lift_A j a) (S i) (lift_N j n)).

Lemma Lift_Asub_Bridge2 :
(a:A)(i,j:nat)(al:A)
(1t j 1)—>
(1ift_A j (AsubstAV al i a))=
(AsubstAV (lift_A j al) (S i) (1ift_4 j a)).

Lemma Lift_Vsub_Bridge3 :
(x:V)(i,j:nat)(a:4)
i=j->
(1ift_4 j (VsubstAV a i x))=
(VsubstAV (lift_A j a) (S i) (Lift_V j x)).

Definition lift_nsub_b_bridge3 : N->Prop :=

[n:N](i,j:nat)(a:h)

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

i=j—>
(1ift_N j (NsubstAV a i n))=

(NsubstAV (lift_A j a) (S i) (lift_N j n)).

Definition lift_asub_b_bridge3 : A->Prop :=
[a:A]1(4i,j:nat)(al:4)
i=j->
(1ift_A j (AsubstAV al i a))=

(AsubstAV (lift_A j al) (S i) (1ift_4 j a)).

Lemma 1ift_nsub_b_Bridge3 :

((n:N) (1ift_nsub_b_bridge3 n))/\ ((a:4)(1lift_asub_b_bridge3 a)).

Lemma Lift_Nsub_Bridge3 :
(n:N)(i,j:nat)(a:4)
i=j->
(1ift_N j (NsubstAV a i n))=

(NsubstAV (1lift_A j a) (S i) (1ift_N j n)).

Lemma Lift_Asub_Bridge3 :
(a:A)(i,j:nat)(al:A)
i=j->
(1ift_A j (AsubstAV al i a))=

(AsubstAV (lift_A j al) (S i) (1ift_A j a)).

Lemma Lift_Msub_Bridgel :
(x:V) (m,m0:M) (i,j:nat)
i=j->
(1ift_M j (MsubstVMV x m i m0))=

(MsubstVMV (1ift_V j x) (1ift_M j m) i (1ift_M (S j) m0)).

Lemma Lift_Mssub_Bridgel
(x:V)(m:M) (ms:Ms) (1,j:nat)
i=j->
(1ift_Ms j (MssubstVMV x m i ms))=

(MssubstVMV (1ift_V j x) (lift_M j m) i (lift_Ms (S j) ms)).

174

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRULJN INDICES 175

Lemma Lift_Phi_Bridge :
(1:L)(i:nat)
(1ift_N i (phi 1))=
(phi (1lift_L i 1)).

Lemma Lift_PhiBar_Bridge :
(1:L)(i:nat)
(1ift_M i (phibar 1))=

(phibar (lift_L i 1)).

Lemma Drop_Lift_L :
(1:L)(x:V)

(drop_L x (1lift_L x 1))=1.

Definition oi_theta : M->Prop :=
[m:M](x:V)
(Occurs_In_M x m)->

(Occurs_In_N x (theta m)).

Definition oi_theta’ : Ms->Prop :=
[ms:Ms](a:4)(x:V)
((0ccurs_In_Ms x ms)\/(Occurs_In_A x a))->

(Occurs_In_N x (theta’ a ms)).

Lemma 0I_theta :
((m:M) (oi_theta m))/\

((ms:Ms) (oi_theta’ ms)).

Lemma 0OI_Theta :
(m:M) (x:V)
(Occurs_In_M x m)->

(Occurs_In_N x (theta m)).

Lemma 0OI_Theta’

(ms:Ms)(a:4)(x:V)

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

((Occurs_In_Ms x ms)\/(Occurs_In_A x a))—>

(Occurs_In_N x (theta’ a ms)).

Definition oi_psi : N->Prop :=
[n:N](x:V)
(Occurs_In_N x n)->

(Occurs_In_M x (psi n)).

Definition oi_psi’ : A->Prop :=
[a:A] (ms:Ms) (x:V)
((Occurs_In_A x a)\/(Occurs_In_Ms x ms))->

(Occurs_In_M x (psi’ a ms)).
P

Lemma OI_psi :
((n:N) (oi_psi n))/\
((a:8)(oi_psi’ a)).

Lemma OI_Psi :
(n:N)(x:V)
(Occurs_In_N x n)->

(Occurs_In_M x (psi n)).

Lemma 0I_Psi’
(a:4)(ms:Ms)(x:V)
((0ccurs_In_A x a)\/(Occurs_In_Ms x ms))->

(Occurs_In_M x (psi’ a ms)).
p

Definition noi_theta : M->Prop :=
[m:M](x:V)
“(Occurs_In_M x m)->

“(Occurs_In_N x (theta m)).

Definition noi_theta’ : Ms->Prop :=
[ms:Ms](x:V)(a:4)
~“(Occurs_In_Ms x ms)->

“(Occurs_In_A x a)->

176

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJIN INDICES 177

“(Occurs_In_N x (theta’ a ms)).

Lemma noi_Theta :
((m:M) (noi_theta m))/\

((ms:Ms) (noi_theta’ ms)).

Lemma NOI_Theta :
(x:V)(m:M)
“(Occurs_In_M x m)->

“(Occurs_In_N x (theta m)).

Lemma NOI_Theta’
(x:V)(a:4) (ms:Ms)
“(Occurs_In_A x a)->
“(Occurs_In_Ms x ms)->

“(O0ccurs_In_N x (theta’ ams)).

Recursive Definition
Height_L : L->nat :=
(vr x) => 0 |
(app x 11 12) => (S (max_nat (Height_L 11) (Height_L 12))) |
(Im 1) => (S (Height_L 1)).

Definition
1t_Height_L : L->L->Prop :=
[11,12:L]1(1t (Height_L 11) (Height_L 12)).

Lemma WF_Height_ L :

(well_founded L 1t_Height_L).

Lemma L_Height_ind1 :
(P:L->Prop)
((10:L)((11:L)(1t_Height_L 11 10)->(P 11))->(P 10))->
(1:L)(P 1).

Lemma L_Height_ind :

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRULJN INDICES 178

(P:L->Prop)
((10:L)((11:L)(1% (Height_L 11) (Height_L 10))->(P 11))->(P 10))->
(1:L)(P 1).

Lemma Height_Lift_L :
(1:L)(i:nat)
(Height_L (lift_L i 1))=

(Height_L 1).

Fixpoint

Height_M [m:M] : nat :=
<nat>Case m of
[x:V] [ms:Ms](S (Height_Ms ms))
[m:M](S (Height_M m))
end with

Height_Ms [ms:Ms] : nat :=
<nat>Case ms of
0
[m:M] [ms:Ms] (S (max_nat (Height_M m) (Height_Ms ms)))

end.

Lemma HTM1 : (x:V)(ms:Ms)

(Height_M (sc x ms))=(S (Height_Ms ms)).

Lemma HTM2 : (m:M)

(Height_M (lambda m))=(S (Height_M m)).

Lemma HTM3 :

(Height_Ms mnil)=0.

Lemma HTM4 : (m:M)(ms:Ms)

(Height_Ms (mcons m ms))=(S (max_nat (Height_M m) (Height_Ms ms))).

Lemma Height_Ms_Zero_Nill : (ms:Ms)
“ms=mnil->

(1t 0 (Height_Ms ms)).

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

Lemma Height_Ms_Zero_Nil : (ms:Ms)
(Height_Ms ms)=0->

ms=mnil.

Lemma Height_M_not_eq_not_eq :
(m:M) (mO:M)
“(Height_M m)=(Height_M m0)->

“m=m0 .

Lemma Height_Ms_not_eq_not_eq :
(ms:Ms) (msO:Ms)
“(Height_Ms ms)=(Height_Ms ms0)->

“ms=msO0.

Definition height_lift_m : M->Prop :=
[m:M] (i:nat)
(Height_M (lift_M i m))=

(Height_M m).

Definition height_lift_ms : Ms->Prop :=
[ms:Ms] (i:nat)
(Height_Ms (lift_Ms i ms))=

(Height_Ms ms).

Lemma height_lift_M :
((m:M) (height_1lift_m m))/\

((ms:Ms) (height_lift_ms ms)).

Lemma Height_Lift_M :
(m:M) (i:nat)
(Height_M (1ift_M i m))=

(Height_M m).

Lemma Height_Lift_Ms :

(ms:Ms) (i:nat)

179

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

(Height_Ms (lift_Ms i ms))=

(Height_Ms ms).

Section HeightMind.

Variable P:M->Prop.

Variable PO:Ms—->Prop.

Definition QSM : M->Prop :=
[m:M]
((m1:M)
((1t (Height_M m1) (Height_M m)) \/
(Height_M m1)=(Height_M m))->
(P m1))/\
((ms1:Ms)
((1t (Height_Ms msi1) (Height_M m)) \/
(Height_Ms ms1)=(Height_M m))->
(PO ms1)).

Definition QSMs : Ms->Prop :=
[ms: Ms]
((m1:M)
((1t (Height_M m1) (Height_Ms ms)) \/
(Height_M mi)=(Height_Ms ms))->
(P m1))/\
((ms1:Ms)
((1t (Height_Ms msi) (Height_Ms ms)) \/
(Height_Ms msi)=(Height_Ms ms))->
(PO ms1)).

Lemma M_Ms_szindil :
(((m:M)(QSM m))/\((ms:Ms) (QSMs ms)))->
(m:M)(P m))/\((ms:Ms) (PO ms)).

Lemma M_Ms_Height_ind :
((m:M)

180

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

(((m1:M) (1t (Height_M mi) (Height_M m))->(P mi)) /\

((ms1:Ms) (1t (Height_Ms ms1) (Height_M m))->(P0 ms1)))->(P m))->

((ms:Ms)
(((ms1:Ms) (1t (Height_Ms msl) (Height_Ms ms))->(PO ms1))/\
((m1:M) (1t (Height_M m1) (Height_Ms ms))->(P m1)))->(P0 ms))->
((m:M) (P m))/\((ms:Ms) (PO ms)).

Recursive Definition
lifts_V : nat->nat->V->V :=
0jx=>x|

(s i) j x => (Lift_V j (lifts_Vi j x)).

Recursive Definition
lifts_L : nat->nat->L->L :=

i j (vr x) = (vr (lifts_V i j x)) |

i j (app x 1 10) =>
(app (1ifts_V i j x)
(lifts_L i j 1)
(1ifts_L i (S j) 10)) |

i j (Im 1) => (Im (lifts_L i (S j) 1)).

Fixpoint
lifts_M1 [m:M] : nat->nat->M :=
[i,j:nat]
<M>Case m of
[x:V] [ms:Ms]
(sc (lifts_V i j x) (lifts_Msi ms i j))
[m:M]
(lambda (lifts_Mim i (S j)))
end
with
lifts_Ms1 [ms:Ms] : nat->nat->Ms :=
[i,j:nat]
<Ms>Case ms of
mnil

[m:M] [ms:Ms]

181

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

(mcons (lifts_M1 m i j) (lifts_Msims i j))

end.

Recursive Definition lifts_M : nat->nat->M->M :=

i jm=> (lifts_ Ml m i j).

Recursive Definition lifts_Ms : nat->nat->Ms->Ms :=

i j ms => (lifts_Msl ms i j).

Lemma LIFTSM1 : (i,j:nat)(x:V)(ms:Ms)
(1ifts_M i j (sc x ms))=

(sc (lifts_V i j x) (lifts_Ms i j ms)).

Lemma LIFTSM2 : (i,j:nat)(m:M)
(1ifts_M i j (lambda m))=
(lambda (1lifts_M i (S j) m)).

Lemma LIFTSM3 : (i,j:nat)

(lifts_Ms i j mnil)=mnil.

Lemma LIFTSM4 : (i,j:nat)(m:M)(ms:Ms)
(1ifts_Ms i j (mcons m ms))=

(mcons (lifts_ M i j m) (lifts_Ms i j ms)).

Lemma Lifts_LO : (1:L)(j:nat)

(lifts_L 0 j 1)=1.

Definition lifts_mO : M->Prop :=
[m:M] (j:nat)

(1ifts_M 0 j m)=m.
Definition lifts_msO : Ms->Prop :=
[ms:Ms] (j:nat)

(1lifts_Ms 0 j ms)=ms.

Lemma Lifts_mO :

182

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRULJN INDICES 183

((m:M)(1lifts_mO m))/\

((ms:Ms)(lifts_msO ms)).

Lemma Lifts_MO :
(m:M) (j:nat)

(1ifts_ M 0 j m)=m.

Lemma Lifts_MsO :
(ms:Ms) (j:nat)

(1ifts_Ms 0 j ms)=ms.

Lemma Lifts_L_recl : (1:L)(i,j:nat)

(Lifts_L (S i) j 1)=(lift_L j (lifts_L i j 1)).

Definition lifts_m_recl : M->Prop :=
[m:M] (i, j:nat)

(lifts_M (S i) j m)=(lift_M j (lifts_M i j m)).

Definition lifts_ms_recl : Ms->Prop :=
[ms:Ms](i,j:nat)

(1ifts_Ms (S i) j ms)=(lift_Ms j (lifts_Ms i j ms)).

Lemma Lifts_m_recl :
((m:M) (lifts_m_recl m))/\

((ms:Ms)(lifts_ms_recl ms)).

Lemma Lifts_M_recl :
(m:M)(i,j:nat)

(Lifts_M (S i) j m)=(lift_M j (lifts_M i j m)).

Lemma Lifts_Ms_recl
(ms:Ms) (i, j:nat)

(1ifts_Ms (S i) j ms)=(1lift_Ms j (lifts_Ms i j ms)).

Lemma Lifts_V_rec2 :

(x:V)(i,j:nat)

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

(Lifts_V (S i) j x)=

(Lifts_V i j (Lift_V j x)).

Lemma Lifts_L_rec2 :
(1:L)(i,j:nat)
(lifts_L (S i) j 1)=

(lifts_L i j (Lift_L j 1)).

Definition lifts_m_rec2 : M->Prop :=
[m:M](4i,j:nat)

(Lifts_M (S i) j m)=(lifts_M i j (1ift_M j m)).

Definition lifts_ms_rec2 : Ms->Prop :=
[ms:Ms](i,j:nat)

(1ifts_Ms (S i) j ms)=(lifts_Ms i j (lift_Ms j ms)).

Lemma Lifts_m_rec2 :
((m:M)(lifts_m_rec2 m))/\

((ms:Ms)(lifts_ms_rec2 ms)).

Lemma Lifts_M_rec2 :
(m:M) (i,j:nat)
(lifts_M (S i) j m)=(lifts_ M i j (lift_M j m)).

Lemma Lifts_Ms_rec2 :
(ms:Ms) (i, j:nat)
(1ifts_Ms (S i) j ms)=(lifts_Ms i j (lift_Ms j ms)).

Lemma Lifts_Msub_BridgeO :
(k:nat) (x:V) (m,m0:M)(i,j:nat)
(1t 1 j)->
(1ifts_M k j (MsubstVMV x m0 i m))=
(MsubstVMV (lifts_V k j x)
(lifts_ M k j m0) i
(lifts_ M k (S j) m)).

184

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

Lemma Lifts_Mssub_BridgeO :
(k:nat) (x:V) (ms:Ms)(m0:M) (i, j:nat)
(1t i j)->
(1ifts_Ms k j (MssubstVMV x m0 i ms))=
(MssubstVMV (lifts_V k j x)
(lifts_M k j mO)
i

(lifts_Ms k (S j) ms)).

Lemma Lifts_Msub_Bridgel
(k:nat) (x:V) (m,m0:M)(i,j:nat)
i=j->
(1ifts_M k j (MsubstVMV x m0 i m))=
(MsubstVMV (lifts_V k j x)
(1ifts_M k j m0) i
(lifts_M k (S j) m)).

Lemma Lifts_Mssub_Bridgel :
(k:nat) (x:V) (ms:Ms) (m0:M) (i, j:nat)
i=j->
(1ifts_Ms k j (MssubstVMV x m0 i ms))=
(MssubstVMV (lifts_V k j x)
(lifts_M k j mO)
i

(lifts_Ms k (S j) ms)).

Lemma Lifts_PhiBar_Bridge : (1:L)(i,j:nat)
(1ifts_M i j (phibar 1))=
(phibar (lifts_L i j 1)).

Lemma Lifts_Lift_V_Bridge3 :
(x:V)(i,j,k:nat)
(1t k j)->
(1ifts_V i j (lift_V k x))=

(1ift_V (plus i k) (lifts_V i j x)).

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

Lemma Lifts_Lift_L_Bridge3 :
(1:L)(i,j,k:nat)
(1t k j)->
(1ifts_L i j (lift_L k 1))=

(1ift_L (plus i k) (lifts_L i j 1)).

Lemma Lifts_Lifts_L_Bridge0 :
(i,j,k,n:nat)(1:L)
k=n->
(1ifts_L i k (lifts_L j n 1))=
(1ifts_L (plus i j) n 1).

Fixpoint
rhobar [m:M] : L :=
<L>Case m of
[x:V] [ms:Ms]
<L>Case ms of
(vr x)
[m:M] [ms:Ms]
(app x (rhobar m) (rhobar’ ms (S 0)))
end
[m:M]
(1m (rhobar m))
end
with
rhobar’ [ms:Ms] : nat->L :=
[i:nat]
<L>Case ms of
(vr 0)
[m:M] [ms:Ms]

(app 0 (lifts_L i O (rhobar m)) (rhobar’ ms (S i)))

end.

Recursive Definition rhobarl : nat->Ms->L :=

i ms => (rhobar’ ms 1i).

186

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJIN INDICES 187

Recursive Definition rho : N->L :=

n => (rhobar (psi n)).

Lemma rhothetarhobar : (m:M)

(rho (theta m))=(rhobar m).

Lemma Rhobarl : (x:V)

(rhobar (sc x mnil))=(vr x).

Lemma Rhobar2 : (x:V)(m:M)
(rhobar (sc x (mcons m mnil)))=

(app x (rhobar m) (vr 0)).

Lemma Rhobar3 : (x:V)(m:M)(ms:Ms)
(rhobar (sc x (mcons m ms)))=

(app x (rhobar m) (rhobaril (S 0) ms)).

Lemma Rhobar4 : (m:M)

(rhobar (lambda m))=(1m (rhobar m)).

Lemma Rhobar5 : (i:nat)

(rhobarl i mnil)=(vr 0).

Lemma Rhobar8 : (m:M)(ms:Ms)(i:nat)
(rhobarl i (mcons m ms))=
(app O
(1ifts_L i 0 (rhobar m))

(rhobarl (S i) ms)).

Definition phibarrhobarl : M->Prop :=
[m:M]

(phibar (rhobar m))=m.

Definition phibarrhobar2 : Ms->Prop :=
[ms:Ms]

(m:M) (i:nat)

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

((m1:M)
(1t (Height_M m1) (Height_Ms (mcons m ms)))->
(phibar (rhobar ml))=ml)->

(phibar (rhobarl i (mcons m ms)))=

(sc 0 (1ifts_Ms i 0 (mcons m ms))).

Lemma Phibarrhobar :
((m:M) (phibarrhobari m))/\
((ms:Ms) (phibarrhobar2 ms)).

Lemma phibarrhobar :

(m:M) (phibar (rhobar m))=m.

Lemma phibarrhobar_ms :
(i:nat) (m:M) (ms:Ms)
(phibar (rhobarl i (mcons m ms)))=

(sc 0 (1ifts_Ms i O (mcons m ms))).

Lemma phirho : (n:N)(phi (rho n))=n.

Inductive

L_Deriv : Hyps -=> L -> F => Prop :=

L_Axiom :
(h:Hyps) (i:V)(P:F)
(In_Hyps i P h)—>
(L_Deriv h (vr i) P) |
Implies_L :
(h:Hyps) (i:V)(P:F)(Q:F)(11:L)(12:L) (R:F)
(In_Hyps i (Impl P Q) h)->
(L_Deriv h 11 P)->
(L_Deriv (Add_Hyp Q h) 12 R)->
(L_Deriv h (app i 11 12) R) |
Implies_R :

(h:Hyps) (P:F)(1:L)(Q:F)
(L_Deriv (Add_Hyp P h) 1 Q)->
(L_Deriv h (Im 1) (Impl P Q)).

188

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

Scheme L_Deriv_indl := Induction for L_Deriv Sort Prop.

Mutual Inductive

M_Deriv : Hyps -> M -> F -> Prop :=

Choose :
(h:Hyps) (i:V)(P:F)(ms:Ms) (R:F)
(In_Hyps i P h)—>
(Ms_Deriv h P ms R)->
(M_Deriv h (sc i ms) R) |
Abstract :

(h:Hyps) (P:F) (m:M) (Q:F)
(M_Deriv (Add_Hyp P h) m Q)->
(M_Deriv h (lambda m) (Impl P Q))
with
Ms_Deriv : Hyps -> F -> Ms -> F -> Prop :=
Meet :
(h:Hyps) (P:F)
(Ms_Deriv h P mnil P) |
Implies_S :
(h:Hyps) (m:M) (P:F)(Q:F) (ms:Ms) (R:F)
(M_Deriv h m P)->
(Ms_Deriv h Q@ ms R)->
(Ms_Deriv h (Impl P Q) (mcons m ms) R).

Scheme M_Ms_Deriv_indl := Induction for M_Deriv Sort Prop

with Ms_M_Deriv_indl := Induction for Ms_Deriv Sort Prop.

Lemma M_Ms_Deriv_ind :
(P:(h:Hyps)(m:M)(£f:F)(M_Deriv h m f)->Prop)
(PO: (h:Hyps) (f:F)(m:Ms) (f0:F)(Ms_Deriv h £ m £0)->Prop)
((h:Hyps)(i:V)(P1:F)(ms:Ms) (R:F)
(i0:(In_Hyps i P1 h))
(m:(Ms_Deriv h P1 ms R))
(PO h P1 ms R m)->
(P h (sc ims) R (Choose h i P1 ms R i0 m)))->

189

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

((h:Hyps) (P1:F) (m:M) (Q:F)
(m0: (M_Deriv (Add_Hyp P1 h) m Q))
(P (Add_Hyp P1 h) m Q m0)->
(P h (lambda m) (Impl P1 Q) (Abstract h P1 m Q m0)))->
((h:Hyps)(P1:F)(PO h P1 mnil P1 (Meet h P1)))->
((h:Hyps) (m:M) (P1,Q:F) (ms:Ms) (R:F)
(m0: (M_Deriv h m P1))
(P hm Pl m0)-—>
(m1:(Ms_Deriv h Q ms R))
(PO h Q ms R mi)->
(PO h (Impl P1 Q) (mcons m ms) R
(Implies_S h m P1 Q ms R m0 m1)))->
((h:Hyps) (m:M) (£:F)(m0: (M_Derivh m £))(P h m f m0))/\
((h:Hyps) (£f:F)(m:Ms) (£f0:F)
(m0:(Ms_Deriv h £ m £0))(PO h £ m £0 m0)).

Mutual Inductive
N_Deduc : Hyps -> N -> F -> Prop :=
Implies_I :
(h:Hyps) (P:F) (n:N) (Q:F)
(N_Deduc (Add_Hyp P h) n Q)->
(N_Deduc h (lam n) (Impl P Q)) |
AN_Axiom :
(h:Hyps) (a:A) (P:F)
(A_Deduc h a P)->
(N_Deduc h (an a) P)
with
A_Deduc : Hyps -> A -> F -> Prop :=
Implies_E :
(h:Hyps) (a:4) (P:F)(Q:F) (n:N)
(A_Deduc h a (Impl P Q))->
(N_Deduc h n P)->
(A_Deduc h (ap a n) Q) |
A_Axiom :
(h:Hyps) (i:V)(P:F)
(In_Hyps i P h)—>

190

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

(A_Deduc h (var i) P).

Scheme N_A_Deduc_indl := Induction for N_Deduc Sort Prop

with A_N_Deduc_indl := Induction for A_Deduc Sort Prop.

Lemma N_A_Deduc_ind
: (P:(h:Hyps) (n:N)(£:F)(N_Deduc h n f)->Prop)
(PO: (h:Hyps) (a:A) (£:F) (A_Deduc h a £)->Prop)
((h:Hyps)
(P1:F)
(n:N)
(Q:F)
(n0: (N_Deduc (Add_Hyp P1 h) n Q))
(P (Add_Hyp P1 h) n Q nO)
->(P h (lam n) (Impl P1 Q) (Implies_I h P1 n Q n0)))
->((h:Hyps)
(a:h)
(P1:F)
(a0:(A_Deduc h a P1))
(PO h a P1 a0)->(P h (an a) P1 (AN_Axiom h a P1 a0)))
->((h:Hyps)
(a:h)
(P1,Q:F)
(n:N)
(a0:(A_Deduc h a (Impl P1 Q)))
(PO h a (Impl P1 Q) a0)
->(n0:(N_Deduc h n P1))
(P h n P1 no)
->(PO h (ap a n) Q
(Implies_E h a P1 Q n a0 n0)))
->((h:Hyps)
(i:v)
(P1:F)
(i0:(In_Hyps i P1 h))

(PO h (var i) P1 (A_Axiom h i P1 i0)))

191

=>((h:Hyps) (n:N)(£:F)(n0:(N_Deduc h n £))(P h n £ n0))/\

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRULJN INDICES 192

((h:Hyps)(a:A)(£:F)(a0:(A_Deduc h a £))(PO h a £ a0)).

Definition m_admis_psi :
(h:Hyps) (n:N) (R:F)(N_Deduc h n R)-> Prop :=
[h:Hyps] [n:N][R:F] [prf:(N_Deduc h n R)](M_Deriv h (psi n) R).

Definition m_admis_psi’
(h:Hyps)(a:A)(P:F)(A_Deduc h a P)->Prop :=
[h:Hyps] [a:A] [P:F] [prf:(A_Deduc h a P)]

(R:F)(ms:Ms) ((Ms_Deriv h P ms R) -> (M_Deriv h (psi’ a ms) R)).

Lemma M_admis_psi :
((h:Hyps) (n:N)(R:F) (prf:(N_Deduc h n R))(m_admis_psi h n R prf))/\
((h:Hyps)(a:A)(R:F)(prf:(A_Deduc h a R))(m_admis_psi’ h a R prf)).

Lemma M_Admis_Psi :
(h:Hyps) (n:N) (R:F)
(N_Deduc h n R)->

(M_Deriv h (psi n) R).

Lemma M_Admis_Psi’
(h:Hyps) (a:4) (ms:Ms)(R:F)(P:F)
(A_Deduc h a P)->
(Ms_Deriv h P ms R)->

(M_Deriv h (psi’ a ms) R).

Definition n_admis_theta : (h:Hyps)(m:M)(P:F)(M_Deriv h m P)->Prop :=
[h:Hyps] [m:M] [R:F] [prf:(M_Deriv h m R)](N_Deduc h (theta m) R).

Definition n_admis_theta’ :
(h:Hyps) (P:F) (ms:Ms)(R:F)(Ms_Deriv h P ms R)->Prop :=
[h:Hyps] [P:F] [ms:Ms] [R:F] [prf: (Ms_Deriv h P ms R)]

(a:A)((A_Deduc h a P) -> (N_Deduc h (theta’ a ms) R)).

Lemma N_admis_theta :

((h:Hyps) (m:M) (P:F)

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

(prf:(M_Deriv h m P))(n_admis_theta h m P prf)) /\
((h:Hyps)(P:F)(ms:Ms)(R:F) (prf: (Ms_Deriv h P ms R))

(n_admis_theta’ h P ms R prf)).
P

Lemma N_Admis_Theta :
(h:Hyps) (m:M) (R:F)
(M_Deriv h m R)—>

(N_Deduc h (theta m) R).

Lemma N_Admis_Theta’ :
(h:Hyps) (P:F) (ms:Ms) (R:F)
(Ms_Deriv h P ms R)->
((a:A)((A_Deduc h a P)->

(N_Deduc h (theta’ a ms) R))).

Recursive Definition
Weaken_Hyps : nat->F->Hyps->Hyps :=
0P h => (Add_Hyp P h) |
(S n) P MT => MT |
(S n) P (Add_Hyp Q h) => (Add_Hyp Q (Weaken_Hyps n P h)).

Lemma In_Weaken_Hyps :
(i,j:nat) (h:Hyps) (P,Q:F)
(1t j (S (Len_Hyps h)))->
(In_Hyps i P h)—>
(In_Hyps (1ift_V j i) P (Weaken_Hyps j Q h)).

Definition n_admis_weaken :

(h:Hyps) (n:N) (P:F)(N_Deduc h n P)->Prop :
[h:Hyps] [n:N] [P:F][D: (N_Deduc h n P)]
(j:nat)(Q:F)
(1t j (S (Len_Hyps h)))->
(N_Deduc (Weaken_Hyps j Q h) (1ift_N j n) P).

Definition a_admis_weaken :

(h:Hyps)(a:A)(P:F)(A_Deduc h a P)->Prop :

193

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJIN INDICES 194

[h:Hyps] [a:A][P:F][D: (A_Deduc h a P)]
(j:nat)(Q:F)

(1t j (S (Len_Hyps h)))->

(A_Deduc (Weaken_Hyps j Q h) (lift_A j a) P).

Lemma N_admis_weaken :
((h:Hyps) (n:N)(R:F)(n0: (N_Deduc h n R))(n_admis_weaken h n R n0))/\

((h:Hyps)(a:A)(R:F)(a0:(A_Deduc h a R))(a_admis_weaken h a R a0)).

Lemma N_Admis_Weaken :
(h:Hyps) (n:N) (P:F) (j:nat)(Q:F)
(N_Deduc h n P)->
(1t j (S (Len_Hyps h)))->
(N_Deduc (Weaken_Hyps j Q h) (1ift_N j n) P).

Lemma A_Admis_Weaken :
(h:Hyps) (a:4)(P:F)(j:nat)(Q:F)
(A_Deduc h a P)->
(1t j (S (Len_Hyps h)))->
(A_Deduc (Weaken_Hyps j Q h) (lift_A j a) P).

Definition 1_admis_weaken :

(h:Hyps) (1:L)(P:F) (L_Deriv h 1 P)->Prop :
[h:Hyps][1:L]1[P:F]1[D:(L_Deriv h 1 P)]
(j:nat)(Q:F)
(1t j (S (Len_Hyps h)))->

(L_Deriv (Weaken_Hyps j Q h) (lift_L j 1) P).

Lemma L_admis_weaken :
(h:Hyps)(1:L)(P:F)(D:(L_Deriv h 1 P))
(1_admis_weaken h 1 P D).

Lemma L_Admis_Weaken :
(h:Hyps) (1:L)(P,Q:F)(j:nat)
(L_Deriv h 1 P)—>

(1t j (s (Len_Hyps h)))—>

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

(L_Deriv (Weaken_Hyps j Q h) (lift_L j 1) P).

Recursive Definition
Strengthen_Hyps : nat->Hyps->Hyps :=
n MT => MT |
0 (Add_Hyp Q h) => h |
(S i) (Add_Hyp Q h) => (Add_Hyp Q (Strengthen_Hyps i h)).

Lemma Drop_S_Bridge_nat :
(i,j:nat)
“i=j—>
(drop_V (s i) (S j))=
(S (drop_V i j)).

Lemma In_Strength :
(h:Hyps) (i,j:nat) (P:F)
(In_Hyps i1 P h)->
“i=j->

(In_Hyps (drop_V j i) P (Strengthen_Hyps j h)).

Definition
n_admis_strengthen : (h:Hyps)(n:N)(Q:F)(N_Deduc h n Q)->Prop :=
[h:Hyps] [n:N][Q:F][D:(N_Deduc h n Q)]
(i:nat)
“(Occurs_In_ N i n)->

(N_Deduc (Strengthen_Hyps i h) (drop_N i n) Q).

Definition
a_admis_strengthen : (h:Hyps)(a:4)(Q:F)(A_Deduc h a Q)->Prop :=
[h:Hyps][a:A1[Q:F][D: (A_Deduc h a Q)]
(i:nat)
“(Occurs_In_A i a)->

(A_Deduc (Strengthen_Hyps i h) (drop_A i a) Q).

Lemma N_admis_strengthen :

((h:Hyps) (n:N)(Q:F) (n0: (N_Deduc h n Q))

19

=

0

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRULJN INDICES 196

(n_admis_strengthen h n Q n0))/\
((h:Hyps)(a:A4)(Q:F)(a0:(A_Deduc h a Q))

(a_admis_strengthen h a Q a0)).

Lemma N_Admis_Strengthen :
(h:Hyps) (n:N)(Q:F) (i:nat)
(N_Deduc h n Q)->
“(Occurs_In_N i n)->

(N_Deduc (Strengthen_Hyps i h) (drop_N i n) Q).

Lemma A_Admis_Strengthen :
(h:Hyps) (a:4)(Q:F)(i:nat)
(A_Deduc h a Q)—>
“(Occurs_In_A i a)->

(A_Deduc (Strengthen_Hyps i h) (drop_A i a) Q).

Definition 1_admis_strengthen : (h:Hyps)(1:L)(Q:F)(L_Deriv h 1 Q)->Prop :=
[h:Hyps][1:L1[Q:F]1[10:(L_Deriv h 1 Q)]
(i:nat)
“(Occurs_In_L i 1)->

(L_Deriv (Strengthen_Hyps i h) (drop_L i 1) Q).

Lemma L_admis_strengthen : (h:Hyps)(1:L)(Q:F)(10:(L_Derivh 1 Q))

(1_admis_strengthen h 1 Q 10).

Lemma L_Admis_Strengthen :
(h:Hyps)(1:L)(Q:F) (i:nat)
(L_Deriv h 1 Q)—>
“(Occurs_In_L i 1)->

(L_Deriv (Strengthen_Hyps i h) (drop_L i 1) Q).

Recursive Definition
Hyps_Exchange : nat->Hyps->Hyps :=
i MT => MT |
i (Add_Hyp P MT) => (Add_Hyp P MT) |
0 (Add_Hyp P (Add_Hyp Q h)) =>

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

(Add_Hyp Q (Add_Hyp P h)) |
(S i) (Add_Hyp P (Add_Hyp Q h)) =>
(Add_Hyp P (Hyps_Exchange i (Add_Hyp Q h))).

Recursive Definition
V_Exchange : nat->V->V :=
i j => (Setifb V

(nategb i j)

(s 1)

(Setifb V
(nategb (S i) j)
i

in.

Recursive Definition
L_Exchange : nat->L->L :=
i (vr x) => (vr (V_Exchange i x)) |
i (app x 11 12) =>
(app (V_Exchange i x)

(L_Exchange i 11)
(L_Exchange (S i) 12)) |

i (Im 1) => (Im (L_Exchange (S i) 1)).

Fixpoint
M_Exchangel [m:M] : nat->M :=
[i:nat]<M>Case m of
[x:V] [ms:Ms]
(sc (V_Exchange i x) (Ms_Exchangel ms i))
[m’:M]
(lambda (M_Exchangel m’ (S 1i)))
end with
Ms_Exchangel [ms:Ms] : nat->Ms :=
[i:nat]<Ms>Case ms of
mnil
[m:M] [ms’ : Ms]

(mcons (M_Exchangel m i) (Ms_Exchangel ms’ 1))

197

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRULJN INDICES 198

end.

Recursive Definition
M_Exchange : nat->M->M :=

i m => (M_Exchangel m 1i).

Recursive Definition
Ms_Exchange : nat->Ms->Ms :=

i ms => (Ms_Exchangel ms i).

Fixpoint
N_Exchangel [n:N] : nat->N :=
[i:nat]<N>Case n of
[n’:N]
(lam (N_Exchangel n’ (S 1i)))
[a:4A]
(an (A_Exchangel a i))
end with
A_Exchangel [a:A] : nat->A :=
[i:nat]<A>Case a of
[a’:A] [n:N]
(ap (A_Exchangel a’ i) (N_Exchangel n i))
[x:Vv]
(var (V_Exchange i x))

end.

Recursive Definition N_Exchange : nat->N->N :

i n => (N_Exchangel n i).

Recursive Definition A_Exchange : nat->A->A :

i a => (A_Exchangel a i).

Lemma MExchl : (i:nat)(x:V)(ms:Ms)
((M_Exchange i (sc x ms)) =

(sc (V_Exchange i x) (Ms_Exchange i ms))).

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

Lemma

Lemma

Lemma

Lemma

Lemma

Lemma

Lemma

Lemma

Lemma

Lemma

MExch2 : (i:nat)(m:M)

((M_Exchange i (lambda m)) = (lambda (M_Exchange (S i) m))).

MExch3 : (i:nat)(Ms_Exchange i mnil)=mnil.

MExch4 : (i:nat)(m:M)
(ms:Ms) ((Ms_Exchange i (mcons m ms)) =

(mcons (M_Exchange i m) (Ms_Exchange i ms))).

NExchl : (i:nat)(n:N)

((N_Exchange i (lam n)) = (lam (N_Exchange (S i) n))).

NExch2 : (i:nat)(a:4)

((N_Exchange i (an a)) = (an (A_Exchange i a))).

NExch3 : (i:nat)(a:4)(n:N)
((A_Exchange i (ap a n)) =

(ap (A_Exchange i a) (N_Exchange i n))).

NExch4 : (i:nat)(x:V)

((A_Exchange i (var x)) = (var (V_Exchange i x))).

Hyps_ref_eq :
(i,j:V)(P,Q:F) (h:Hyps)
i=j->
(In_Hyps i P h)—>
(In_Hyps j Q h)->
P=q.

V_Exch_S_Bridge :
(i,j:nat)
(V_Exchange (S i) (S j))=
(s (V_Exchange i j)).

V_Exch_id :

(i:nat)

199

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

(V_Exchange i i)=(S 1i).

Lemma In_Exchl :
(h:Hyps) (i,j:nat)(P:F)
(1t i j)—>
(In_Hyps i P h)—>

(In_Hyps i P (Hyps_Exchange j h)).

Lemma In_Exch2 :
(h:Hyps) (i,j:nat) (P:F)
(1t (S j) i)->
(In_Hyps i P h)->

(In_Hyps i P (Hyps_Exchange j h)).

Lemma In_Exch :
(i,j:nat) (h:Hyps)(P,Q,R:F)
(In_Hyps i1 P h)->
(In_Hyps j Q h)->
(In_Hyps (S j) R h)->

(In_Hyps (V_Exchange j i) P (Hyps_Exchange j h)).

Definition 1_admis_exchl :
(h:Hyps)(1:L)(R:F)(L_Deriv h 1 R)->Prop :=
[h:Hyps] [1:L]1[R:F][10:(L_Deriv h 1 R)](j:nat)(P,Q:F)
(In_Hyps j P h)->
(In_Hyps (S j) Q h)—>
(L_Deriv (Hyps_Exchange j h)
(L_Exchange j 1)
R).

Lemma L_admis_exch :
(h:Hyps)(1:L)(R:F)(D:(L_Derivh 1 R))
(1_admis_exchi h 1 R D).

Lemma L_Admis_Exch :

(h:Hyps)(1:L)(R:F)(j:nat)(P,Q:F)

200

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

(L_Deriv h 1 R)->
(In_Hyps j P h)->
(In_Hyps (S j) Q h)->
(L_Deriv (Hyps_Exchange j h)
(L_Exchange j 1)
R).

Lemma Hyps_Exchange_Top :
(P,Q:F) (h:Hyps)
(Hyps_Exchange 0 (Add_Hyp P (Add_Hyp Q h)))=
(Add_Hyp Q (Add_Hyp P h)).

Lemma L_Admis_Exch_Top :
(P,Q,R:F)(h:Hyps)(1:L)
(L_Deriv (Add_Hyp P (Add_Hyp Q h)) 1 R)->
(L_Deriv (Add_Hyp Q (Add_Hyp P h)) (L_Exchange 0 1) R).

Definition n_admis_exch :
(h:Hyps) (n:N) (R:F) (N_Deduc h n R)->Prop :=
[h:Hyps] [n:N] [R:F] [n0: (N_Deduc h n R)](j:nat)(P,Q:F)
(In_Hyps j P h)->
(In_Hyps (S j) Q h)->
(N_Deduc (Hyps_Exchange j h)
(N_Exchange j n)
R).

Definition a_admis_exch :
(h:Hyps)(a:A) (R:F) (A_Deduc h a R)->Prop :=
[h:Hyps] [a:A][R:F][a0: (A_Deduc h a R)](j:nat)(P,Q:F)
(In_Hyps j P h)->
(In_Hyps (S j) Q h)->
(A_Deduc (Hyps_Exchange j h)
(A_Exchange j a)
R).

Lemma N_admis_exch :

201

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRULJN INDICES 202

((h:Hyps) (n:N)(R:F)(n0: (N_Deduc h n R))(n_admis_exch h n R n0))/\
((h:Hyps)(a:A)(R:F)(a0:(A_Deduc h a R))(a_admis_exch h a R a0)).

Lemma N_Admis_Exch : (h:Hyps)(n:N)(R:F)(j:nat)(P,Q:F)
(N_Deduc h n R)->
(In_Hyps j P h)->
(In_Hyps (S j) Q h)—>
(N_Deduc (Hyps_Exchange j h)
(N_Exchange j n)
R).

Lemma A_Admis_Exch : (h:Hyps)(a:4)(R:F)(j:nat)(P,Q:F)
(A_Deduc h a R)->
(In_Hyps j P h)->
(In_Hyps (S j) Q h)->
(A_Deduc (Hyps_Exchange j h)
(A_Exchange j a)
R).

Lemma V_Exchange_inv :
(x:V)(i,j:nat)
i=j->

(V_Exchange i (V_Exchange j x))=x.

Lemma L_Exchange_inv :
(1:L)(i,j:nat)
i=j->

(L_Exchange i (L_Exchange j 1))=1.

Lemma M_Admis_Weaken :
(h:Hyps) (m:M) (P:F) (j:nat) (Q:F)
(M_Deriv h m P)->
(1t j (S (Len_Hyps h)))->

(M_Deriv (Weaken Hyps j Q h) (1ift_M j m) P).

Lemma Ms_Admis_Weaken :

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

(ms:Ms) (h:Hyps) (R:F)(P:F)(j:nat)(Q:F)
(Ms_Deriv h R ms P)->
(1t j (S (Len_Hyps h)))->

(Ms_Deriv (Weaken_Hyps j Q h) R (1ift_Ms j ms) P).

Lemma M_Admis_Weaken_Top :
(h:Hyps) (m:M) (P:F)
(M_Deriv h m P)->

(Q:F)(M_Deriv (Add_Hyp Q h) (1ift_M O m) P).

Lemma Ms_Admis_Weaken_Top :
(ms:Ms) (h:Hyps) (R,P:F)
(Ms_Deriv h R ms P)->

(Q:F)(Ms_Deriv (Add_Hyp Q h) R (lift_Ms 0 ms) P).

Lemma N_Admis_Weaken_Top :
(h:Hyps) (n:N) (P:F)
(N_Deduc h n P)->

(Q:F)(N_Deduc (Add_Hyp Q h) (1ift_N O n) P).

Lemma A_Admis_Weaken_Top :
(h:Hyps) (a:4) (P:F)
(A_Deduc h a P)—>

(Q:F)(A_Deduc (Add_Hyp Q h) (lift_A 0 a) P).

Lemma L_Admis_Weaken_Top :
(h:Hyps)(1:L)(P:F)
(L_Deriv h 1 P)->

(Q:F)(L_Deriv (Add_Hyp Q h) (1ift_L 0 1) P).

Definition lift_rhobar_bridge : M->Prop :=
[m:M] (i:nat)
(1ift_L i (rhobar m))=
(rhobar (lift_M i m)).

Definition lift_rhobaril_bridge : Ms->Prop :=

203

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

[ms:Ms](i,j:nat)(m:M)
(1t 0 1)—>
((m1:M) (k:nat)
(1t (Height_M m1) (Height_Ms (mcons m ms)))->
(1ift_L k (rhobar m1))=
(rhobar (lift_M k mi1)))->
(rhobarl i (1lift_Ms j (mcons m ms)))=

(1ift_L (plus i j) (rhobaril i (mcons m ms))).

Lemma 1ift_rhobar_Bridge :
((m:M) (1ift_rhobar_bridge m))/\

((ms:Ms) (lift_rhobarl_bridge ms)).

Lemma Lift_RhoBar_Bridge :
(m:M) (i:nat)
(1ift_L i (rhobar m))=

(rhobar (1lift_M i m)).

Lemma Lift_RhoBaril_Bridge :
(ms:Ms)(i,j:nat)(m:M)
(1t 0 i)—>
(rhobar1l i (lift_Ms j (mcons m ms)))=

(1ift_L (plus i j) (rhobaril i (mcons m ms))).

Lemma Lifts_RhoBar_Bridge :
(i,j:nat)(m:M)
(1ifts_L i j (rhobar m))=

(rhobar (lifts_M i j m)).

Lemma Lift_RhoBaril_Bridgel :
(ms:Ms) (i, j:nat)
(1t 0 1)->
(rhobarl i (lift_Ms j ms))=
(1ift_L (plus i j) (rhobarl i ms)).

Lemma RhoBarl_Lifts_Msli

204

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

(ms:Ms) (i, j:nat)
(rhobarl j (lifts_Ms (S i) 0 ms))=

(rhobarl (S j) (lifts_Ms i 0 ms)).

Lemma RhoBarl _Lifts_Ms :
(i,j:nat)(ms:Ms)
(rhobarl j (lifts_Ms i 0 ms))=

(rhobarl (plus j i) ms).

Definition rhobar21 : M->Prop :=
[m:M] (x:V)(ms:Ms)
((ms1:Ms)(i:nat)
(1t (Height_Ms ms1) (Height_Ms (mcons m ms)))->
(rhobarl (S i) msl)=
(rhobar (sc 0 (lifts_Ms (S i) 0 ms1))))->
(rhobar (sc x (mcons m ms)))=

(app x (rhobar m) (rhobar (sc 0 (1ift_Ms O ms)))).

Definition rhobar22 : Ms->Prop :=
[ms:Ms] (i:nat)
(rhobarl (S i) ms)=

(rhobar (sc 0 (lifts_Ms (S i) O ms))).

Lemma Rhobar21l :
((m:M) (rhobar21 m))/\

((ms:Ms) (rhobar22 ms)).

Lemma RhoBarl : (x:V)

(rhobar (sc x mnil))=(vr x).

Lemma RhoBar2 : (ms:Ms)(x:V)(m:M)
(rhobar (sc x (mcons m ms)))=

(app x (rhobar m) (rhobar (sc 0 (lift_Ms 0 ms)))).

Lemma RhoBar3 : (m:M)

(rhobar (lambda m))=(1m (rhobar m)).

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

Definition 1l_admis_rhobar_m : M->Prop :=
[m:M] (h:Hyps) (P:F)
(M_Deriv h m P)->

(L_Deriv h (rhobar m) P).

Definition 1_admis_rhobar_ms : Ms->Prop :=
[ms:Ms] (h:Hyps) (P,Q:F)
((m1:M) (hi:Hyps) (P1:F)
(1t (Height_M m1) (Height_Ms ms))->
(M_Deriv hi mi P1)->
(L_Deriv h1l (rhobar ml) P1))->
(Ms_Deriv (Add_Hyp Q h) Q ms P)->
(L_Deriv (Add_Hyp Q h) (rhobar (sc 0 ms)) P).

Lemma IL_Admis_RhoBari :
((m:M)(1_admis_rhobar_m m))/\

((ms:Ms) (1_admis_rhobar_ms ms)).

Lemma L_Admis_RhoBar : (h:Hyps)(m:M)(P:F)
(M_Deriv h m P)->

(L_Deriv h (rhobar m) P).

Lemma L_Admis_Rho : (h:Hyps)(n:N)(P:F)
(N_Deduc h n P)->

(L_Deriv h (rho n) P).

Definition
n_admis_sub :
(h:Hyps) (n:N)(P:F)(N_Deduc h n P)->Prop :=
[h:Hyps] [n:N] [P:F][D: (N_Deduc h n P)]
(g:nat)(Q:F)(a0:4)
(In_Hyps g Q h)->
(A_Deduc (Strengthen_Hyps g h) a0 Q)->
(N_Deduc (Strengthen_Hyps g h)

(NsubstAV a0 g n)

206

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

P).

Definition
a_admis_sub :

(h:Hyps)(a:A)(P:F)(A_Deduc h a P)->Prop :=
[h:Hyps] [a:AJ[P:F][D: (A_Deduc h a P)]
(g:nat)(Q:F)(a0:4)

(In_Hyps g Q h)->
(A_Deduc (Strengthen_Hyps g h) a0 Q)->
(A_Deduc (Strengthen_Hyps g h)
(AsubstAV a0 g a)
P).

Lemma N_admis_sub :

((h:Hyps)(n:N)(P:F)(D: (N_Deduc h n P))(n_admis_sub h n P D))/\
((h:Hyps)(a:A)(P:F)(D:(A_Deduc h a P))(a_admis_sub h a P D)).

Lemma N_Admis_Sub :
(h:Hyps) (n:N) (P:F)(Q:F) (a0:4) (g:nat)
(N_Deduc h n P)->
(In_Hyps g Q h)->
(A_Deduc (Strengthen_Hyps g h) a0 Q)->
(N_Deduc (Strengthen_Hyps g h)
(NsubstAV a0 g n)
P).

Lemma A_Admis_Sub :
(h:Hyps) (a:4) (P:F)(Q:F)(a0:4) (g:nat)
(A_Deduc h a P)->

(In_Hyps g Q h)->
(A_Deduc (Strengthen_Hyps g h) a0 Q)->
(A_Deduc (Strengthen_Hyps g h)
(AsubstAV a0 g a)
P).

207

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

Lemma SW_Id :
(h:Hyps) (i:nat) (P:F)
(Strengthen_Hyps i (Weaken_Hyps i P h))=
h.

Definition n_admis_phi : (h:Hyps)(1:L)(P:F)(L_Deriv h 1 P)->Prop :=

[h:Hyps][1:L]1[P:F1[10:(L_Deriv h 1 P)]J(N_Deduc h (phi 1) P).

Lemma N_Admis_Phi_1 : (h:Hyps)(1:L)(P:F)(10:(L_Deriv h 1 P))

(n_admis_phi h 1 P 10).

Lemma N_Admis_Phi : (h:Hyps)(1:L)(P:F)
(L_Deriv h 1 P)->

(N_Deduc h (phi 1) P).

Lemma M_Admis_PhiBar : (h:Hyps)(1:L)(P:F)
(L_Deriv h 1 P)->

(M_Deriv h (phibar 1) P).

Lemma Exchange_Lift_V :
(v,x,y:V)
(x=y)->
(V_Exchange x (1ift_V y v))=
(1ift_V (S y) v).

Definition exchange_lift_m : M->Prop :=
[m:M](x,y:V)
xX=y->
(M_Exchange x (1ift_M y m))=
(1ift_M (S y) m).

Definition exchange_lift_ms : Ms->Prop :=
[ms:Ms](x,y:V)
X=y->
(Ms_Exchange x (lift_Ms y ms))=
(1ift_Ms (S y) ms).

208

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

Lemma Exchange_lift_m :
((m:M) (exchange_lift_m m))/\

((ms:Ms) (exchange_lift_ms ms)).

Lemma Exchange_Lift_M :
(x,y:V)(m:M)
X=y->
(M_Exchange x (1ift_M y m))=

(1ift_M (S y) m).

Lemma Exchange_Lift_Ms :
(x,y:V)(ms:Ms)
x=y->
(Ms_Exchange x (lift_Ms y ms))=
(1ift_Ms (S y) ms).

Lemma Lift_Exchange_V1 :
(v,x,y:V)
(1t x (S y))—>
(1ift_V x (V_Exchange y v))=

(V_Exchange (S y) (1ift_V x v)).

Definition lift_exchange_ml : M->Prop :=
[m:M] (x,y:nat)
(1t x (S y))—>
(1ift_M x (M_Exchange y m))=
(M_Exchange (S y) (1ift_M x m)).

Definition 1ift_exchange_msl : Ms->Prop :=
[ms:Ms] (x,y:nat)
(1t x (S y))—>
(1ift_Ms x (Ms_Exchange y ms))=
(Ms_Exchange (S y) (lift_Ms x ms)).

Lemma 1lift_exchange_ M1 :

209

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

((m:M) (1ift_exchange_mi m))/\

((ms:Ms)(1lift_exchange_ms1 ms)).

Lemma Lift_Exchange_M1 :
(m:M) (x,y:nat)
(1t x (S y))—>
(1ift_M x (M_Exchange y m))=

(M_Exchange (S y) (1ift_M x m)).

Lemma Lift_Exchange_Msi
(ms:Ms) (x,y:nat)
(1t x (S y))—>

(1ift_Ms x (Ms_Exchange y ms))=

(Ms_Exchange (S y) (lift_Ms x ms)).

Definition exchange_rhobar_bridge : M->Prop :=
[m:M] (x:V)
(L_Exchange x (rhobar m))=

(rhobar (M_Exchange x m)).

Definition exchange_rhobaril_bridge : Ms->Prop :=
[ms:Ms](x,y:V)
(L_Exchange x (rhobar (sc y ms)))=

(rhobar (M_Exchange x (sc y ms))).

Lemma Exchange_rhobar_bridge :
((m:M) (exchange_rhobar_bridge m))/\

((ms:Ms) (exchange_rhobari_bridge ms)).

Lemma Exchange_RhoBar_Bridge :
(x:nat) (m:M)
(L_Exchange x (rhobar m))=

(rhobar (M_Exchange x m)).

Definition height_m_exchange : M->Prop :=

[m:M] (x:nat)

210

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

(Height_M (M_Exchange x m))=
(Height_M m).

Definition height_ms_exchange : Ms->Prop :=
[ms:Ms] (x:nat)
(Height_Ms (Ms_Exchange x ms))=

(Height_Ms ms).

Lemma Height_m_exchange :
((m:M) (height_m_exchange m))/\

((ms:Ms) (height_ms_exchange ms)).

Lemma Height_M_Exchange :
(m:M) (x:nat)
(Height_M (M_Exchange x m))=
(Height_M m).

Lemma Height_Ms_Exchange :
(ms:Ms) (x:nat)
(Height_Ms (Ms_Exchange x ms))=

(Height_Ms ms).

Definition msub_exch_bridgel : M->Prop :=
[m:M](x,y:V)(m1:M)
(MsubstVMV x mi1 y (M_Exchange y m))=

(MsubstVMV x m1 (S y) m).

Definition mssub_exch_bridgel : Ms->Prop :=
[ms:Ms](x,y:V)(mi:M)
(MssubstVMV x m1 y (Ms_Exchange y ms))=

(MssubstVMV x m1 (S y) ms).

Lemma Msub_exch_bridgel
((m:M) (msub_exch_bridgel m))/\

((ms:Ms) (mssub_exch_bridgel ms)).

211

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

Lemma Msub_Exch_Bridgel
(m:M)(x,y:V)(m1:M)
(MsubstVMV x ml y (M_Exchange y m))=

(MsubstVMV x m1 (S y) m).

Lemma Mssub_Exch_Bridgel
(ms:Ms) (x,y:V) (m1:M)
(MssubstVMV x m1 y (Ms_Exchange y ms))=
(MssubstVMV x m1 (S y) ms).

Mutual Inductive
Norm_L : L->Prop :=
norm_vr : (x:V)(Norm_L (vr x)) |
norm_app :
(x:V)(11,12:L)
(Norm_L 11)->
(Norm’ _L 12)->
(Norm_L (app x 11 12)) |
norm_1lm :
(1:1L)
(Norm_L 1)->
(Norm_L (1m 1))
with
Norm’_L : L->Prop :=
norm’ _vr : (Norm’_L (vr 0)) |
norm’_app :
(11,12:L)
(Norm_L 11)->
(Norm’_L 12)->
“(Occurs_In_L 0 11)->
"(Occurs_In_L (S 0) 12)->

(Norm’_L (app 0 11 12)).

Scheme Norm_Norm’_L_indl := Induction for Norm_L Sort Prop

with Norm’_Norm_L_indl := Induction for Norm’_L Sort Prop.

212

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

Lemma Norm_Norm’_L_ind :
(P:(1:L)(Norm_L 1)->Prop)
(P0:(1:L)(Norm’_L 1)->Prop)
((x:V)(P (vr x) (norm_vr x)))
->((x:V)
(11,12:L)
(n: (Norm_L 11))
(P 11 n)
=>(n0: (Norm’_L 12))
(PO 12 n0)
->(P (app x 11 12) (norm_app x 11 12 n n0)))
=>((1:L)(n: (Norm_L 1))(P 1 n)->(P (1m 1) (norm_1lm 1 mn)))
->(P0 (vr 0) norm’_vr)
->((11,12:L)
(n:(Norm_L 11))
(P 11 n)
=>(n0: (Norm’_L 12))
(PO 12 no0)
->(n1:"(0ccurs_In_L 0 11))
(n2:"(0ccurs_In_L (S 0) 12))
(PO (app 0 11 12)
(norm’_app 11 12 n n0 ni n2)))
->((1:L) (n: (Norm_L 1)) (P 1 n))/\
((1:L)(n:(Norm’ _L 1))(PO 1 n)).

Fixpoint
Norm_Lb [1:L] : bool :=
<bool>Case 1 of

[x:Vv]
true

[x:v][10,11:L]
(andb (Norm_Lb 10)

(Norm’_Lb 11))

[1:1]

(Norm_Lb 1)

end with

213

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRULIN INDICES 214

Norm’_Lb [1:L] : bool :=
<bool>Case 1 of

[x:V]
(nategb x 0)

[x:v][10,11:L]
(andb (nateqb x 0)
(andb (negb (Occurs_In_L1 0 10))
(andb (negb (Occurs_In_L1 (S 0) 11))
(andb (Norm_Lb 10)

(Norm’_Lb 11)))))

[1:1]
false
end.
Lemma NMLB1 :
(x:V)

(Norm_Lb (vr x))=true.

Lemma NMLB2 :
(x:V)(10,11:L)
(Norm_Lb (app x 10 11))=
(andb (Norm_Lb 10)
(Norm’_Lb 11)).

Lemma NMLB3 :
(1:L)
(Norm_Lb (Im 1))=

(Norm_Lb 1).

Lemma NMLB4 :
(x:V)
(Norm’_Lb (vr x))=

(nategb x 0).

Lemma NMLB5 :
(x:V)(10,11:L)

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRULJN INDICES 215

(Norm’_Lb (app x 10 11))=
(andb (nategb x 0)
(andb (negb (Occurs_In_L1 0 10))
(andb (negb (Occurs_In_L1 (S 0) 11))
(andb (Norm_Lb 10)

(Norm’ _Lb 11))))).

Lemma NMLB6 :
(1:L)
(Norm’_Lb (Im 1))=

false.

Lemma nmlbl_is_nmlbl :
(1:1)
((Norm_L 1)->
(Norm_Lb 1)=true)/\
((Norm’_L 1)->

(Norm’_Lb 1)=true).

Lemma NMLB1_is_NMLB1 :
(1:L)
((Norm_L 1)->
(Norm_Lb 1l)=true).

Lemma NM’LB1_is_NM’LB1 :
(1:L)
((Norm’_L 1)->

(Norm’_Lb 1)=true).

Lemma nmlbl_is_nmlb2 :
(1:1)
((Norm_Lb 1)=true->
(Norm_L 1))/\
((Norm’ _Lb 1)=true->

(Norm’_L 1)).

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRULIJN INDICES 216

Lemma NMLB1_is_NMLB2 :
(1:L)
((Norm_Lb 1)=true->

(Norm_L 1)).

Lemma NM’LB1_is_NM’LB2 :
(1:L)
((Norm’_Lb 1)=true->

(Norm’_L 1)).

Lemma NMLB1_is_NMLB3 :
(1:L)
("(Norm_L 1)->

(Norm_Lb 1)=false).

Lemma NM’LB1_is_NM'’LB3 :
(1:L)
(" (Norm’_L 1)->

(Norm’ _Lb 1l)=false).

Lemma NMLB1_is_NMLB4 :
(1:L)
((Norm_Lb 1)=false->

“(Norm_L 1)).

Lemma NM’LB1_is_NM’LB4 :
(1:L)
((Norm’_Lb 1)=false->

“(Norm’_L 1)).
Definition NML_compare : L->Prop :=
[1:L]

((Norm_L 1)\/~(Norm_L 1)).

Lemma NML_dec : (1:L)(NML_compare 1).

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

Definition NM’L_compare : L->Prop :=
[1:1]
((Norm’_L 1)\/~(Norm’_L 1)).

Lemma NM’L_dec : (1:L)(NM’L_compare 1).

Definition noi_rhobarl : M->Prop :=
[m:M] (i:nat)
“(Occurs_In_L (S i)
(rhobar (lift_M i (1lift_M i m)))).

Definition noi_rhobar2 : Ms->Prop :=
[ms:Ms] (i:nat)
“(Occurs_In_L (S i)
(rhobar (sc 0 (1ift_Ms i (lift_Ms i ms))))).

Lemma noi_rhobar :
((m:M) (noi_rhobaril m))/\

((ms:Ms) (noi_rhobar2 ms)).

Lemma NOI_RhoBaril :
(m:M)(i:nat)
“(Occurs_In_L (S i)
(rhobar (lift_M i (lift_M i m)))).

Lemma NOI_RhoBar2 :
(ms:Ms) (i:nat)
“(Occurs_In_L (S i)
(rhobar (sc 0 (lift_Ms i (1lift_Ms i ms))))).

Definition norm_1l_rhobar_m : M->Prop :=

[m:M] (Norm_L (rhobar m)).

Definition norm_1_rhobar_ms : Ms->Prop :=
[ms:Ms]
(Norm’_L (rhobar (sc 0 (lift_Ms 0 ms)))).

217

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

Lemma norm_1l_rhobar :
((m:M) (norm_1_rhobar_m m))/\

((ms:Ms) (norm_1_rhobar_ms ms)) .

Lemma Norm_L_RhoBar : (m:M)

(Norm_L (rhobar m)).

Lemma Norm’_L_RhoBar : (ms:Ms)

(Norm’_L (rhobar (sc 0 (lift_Ms O ms)))).

Inductive
L_Perml : L->L->Prop :=
1_permi_Ilm :
(11,12:L)
(L_Permi 11 12)->
(L_Permi (1m 11) (1m 12)) |
1_permi_appl :
(i:V)(111,112,12:L)
(L_Permi 111 112)->
(L_Permi (app i 111 12) (app i 112 12)) |
1_permi_app2 :
(i:v)(11,121,122:L)
(L_Permi 121 122)->
(L_Perml (app i 11 121) (app i 11 122)) |
1_perml_app_wkn :
(x:V)(11,12:L)
“(Occurs_In_L 0 12)->
(L_Permi (app x 11 12) (drop_L 0 12)) |
1_perml_app_appl :
(x,z:V)(11,12,13:L)
((0ccurs_In_L 0 12)\/(0ccurs_In_L (S 0) 13))->
(Norm’_L 13)->
(L_Permi (app x 11 (app (S z) 12 13))
(app z
(app x 11 12)

218

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

(app (1ift_V O x)
(1ift_L 0 11)
(L_Exchange 0 13)))) |
1_perml_app_app2 :
(x:V)(11,12,13:L)
((Occurs_In_L 0 12)\/(Occurs_In_L (S 0) 13))->
(Norm’_L 13)->
(L_Permi (app x 11 (app 0 12 13))
(app x
11
(app O
(app (1ift_V O x)
(1ift_L 0 11)
(1ift_L (s 0) 12))
(app (1ifts_V (s (s 0)) 0 x)
(lifts_L (S (S 0)) 0 11)
(L_Exchange O
(1ift_L (s (S 0)) 13))))))
1_perml_app_1m : (x:V)(11,12:L)
(L_Permi (app x 11 (1m 12))
(Im (app (1ift_V O x)
(1ift_L 0 11)
(L_Exchange 0 12)))).

Scheme L_Perml_indl := Induction for L_Perml Sort Prop.

Lemma perm_not_norm_11
(10,11,12:L) (x:V)
(Occurs_In_L 0 11)->

“(Norm_L (app x 10 (app 0 11 12))).

Lemma perm_not_norm_12 :
(10,11,12:L) (x:V)
(Occurs_In_L (S 0) 12)->

“(Norm_L (app x 10 (app 0 11 12))).

219

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRULJN INDICES 220

Lemma Norm’_Norm_L :
(1:L)
(Norm’_L 1)->

(Norm_L 1).

Lemma Perm_not_norm_1 :
(10,11:L)
(L_Permi 10 11)->
“(Norm_L 10).

Lemma Perm_Not_Norm_L :
(10,11:L)
(L_Permi 10 11)->

“(Norm_L 10).

Lemma Norm_Imperm_L :
(10,11:L)
(Norm_L 10)->

“(L_Permi 10 11).

Inductive
L_Permn : L->L->Prop :=
1_permn_base :
(10,11:L)
10=11->
(L_Permn 10 11) |
1_permn_rec :
(10,11,12:L)
(L_Permi 10 11)->
(L_Permn 11 12)->

(L_Permn 10 12).

Scheme L_Permn_indl := Induction for L_Permn Sort Prop.

Definition 1_admis_perml :

(1,10:L)(L_Permi 1 10)->Prop :=

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRULJN INDICES 221

[1,10:L][d:(L_Permi 1 10)]
(h:Hyps)(P:F)(L_Deriv h 1 P)->
(L_Deriv h 10 P).

Lemma L_admis_perml :
(1,10:L)(D:(L_Permi 1 10))

(1_admis_permi 1 10 D).

Lemma L_Admis_Perml :
(1,10:L) (h:Hyps) (P:F)
(L_Permi 1 10)->
(L_Deriv h 1 P)->

(L_Deriv h 10 P).

Lemma L_Permin :
(1,10:L)
(L_Permi1 1 10)->

(L_Permn 1 10).

Definition 1_permnn : (1,10:L)(L_Permn 1 10)->Prop :=
[1,10:L]1[d:(L_Permn 1 10)]
(11:L)
(L_Permn 10 11)->

(L_Permn 1 11).

Lemma L_permnn :
(1,10:L)(d:(L_Permn 1 10))

(1_permnn 1 10 d).

Lemma L_Permnn :
(1,10,11:L)
(L_Permn 1 10)->
(L_Permn 10 11)->
(L_Permn 1 11).

Definition 1_permn_appl :

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

(1,10:L)(L_Permn 1 10)->Prop :=
[1,10:L]1[D:(L_Permn 1 10)]
(x:V)(11:L)

(L_Permn (app x 1 11) (app x 10 11)).

Lemma L_permn_appil :
(1,10:L)(D:(L_Permn 1 10))

(1_permn_appl 1 10 D).

Lemma L_Permn_appl :
(1,10,11:L)(x:V)
(L_Permn 1 10)->

(L_Permn (app x 1 11) (app x 10 11)).

Definition 1l_permn_app2 :
(10,11:L)(L_Permn 10 11)->Prop :=
[10,11:L][D:(L_Permn 10 11)]
(x:V)(1:L)

(L_Permn (app x 1 10) (app x 1 11)).

Lemma L_permn_app2 :
(10,11:L)(D: (L._Permn 10 11))
(1_permn_app2 10 11 D).

Lemma L_Permn_app2 :
(1,10,11:L)(x:V)
(L_Permn 10 11)->

(L_Permn (app x 1 10) (app x 1 11)).

Lemma L_Permn_app :
(x:v)(10,11,12,13:L)
(L_Permn 10 11)->
(L_Permn 12 13)->

(L_Permn (app x 10 12) (app x 11 13)).

Definition 1_permn_1m :

222

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

(10,11:L)(L_Permn 10 11)->Prop :=
[10,11:L][d:(L_Permn 10 11)]

(L_Permn (1m 10) (1m 11)).

Lemma L_permn_Ilm :
(10,11:L)(d: (L_Permn 10 11))
(1_permn_1lm 10 11 d).

Lemma L_Permn_1lm :
(1,10:L)
(L_Permn 1 10)->

(L_Permn (1m 1) (1m 10)).

Definition 1l_admis_permn :
(1,10:L)(L_Permn 1 10)->Prop :=
[1,10:L][d:(L_Permn 1 10)]
(h:Hyps) (P:F)
(L_Derivh 1 P)->

(L_Deriv h 10 P).

Lemma L_admis_permn :
(1,10:L)(d:(L._Permn 1 10))
(1_admis_permn 1 10 d).

Lemma L_Admis_Permn :
(h:Hyps) (10,11:L)(P:F)
(L_Permn 10 11)->
(L_Deriv h 10 P)->

(L_Deriv h 11 P).

Definition oi_rhobar_m : M->Prop :=
[m:M](x:V)
(Occurs_In_M x m)->

(Occurs_In_L x (rhobar m)).

Definition oi_rhobar_ms : Ms->Prop :=

223

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRULIN INDICES 224

[ms:Ms](x,y:V)
(Occurs_In_Ms x ms)->

(Occurs_In_L (S x) (rhobar (sc y (lift_Ms 0 ms)))).

Lemma oi_rhobar_M :
((m:M) (oi_rhobar_m m))/\

((ms:Ms) (oi_rhobar_ms ms)).

Lemma OI_RhoBar_M :
(m:M) (x:V)
(Occurs_In_M x m)->

(Occurs_In_L x (rhobar m)).

Lemma OI_RhoBar_Ms :
(ms:Ms) (x,y:V)
(Occurs_In_Ms x ms)->

(Occurs_In_L (S x) (rhobar (sc y (lift_Ms 0 ms)))).

Lemma NOI_RhoBar_M :
(m:M) (x:V)
~“(Occurs_In_L x (rhobar m))->

“(Occurs_In_M x m).

Lemma NOI_RhoBar_Ms :
(ms:Ms) (x:V)
“(0Occurs_In_L (S x) (rhobar (sc 0 (1lift_Ms 0 ms))))->

~“(Occurs_In_Ms x ms).

Definition oi_rhobar_mil : M->Prop :=
[m:M](x:V)
(Occurs_In_L x (rhobar m))->

(Occurs_In_M x m).

Definition oi_rhobar_ms1 : Ms->Prop :=
[ms:Ms](x:V)

(Occurs_In_L (S x) (rhobar (sc 0 (lift_Ms O ms))))—>

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

(Occurs_In_Ms x ms).

Lemma oi_rhobar_M1 :
((m:M) (oi_rhobar_ml m))/\

((ms:Ms) (oi_rhobar_ms1 ms)).

Lemma OI_RhoBar_M1 :
(x:V)(m:M)
(Occurs_In_L x (rhobar m))->

(Occurs_In_M x m).

Lemma OI_RhoBar_Ms1 :
(x:V)(ms:Ms)
(Occurs_In_L (S x) (rhobar (sc 0 (lift_Ms O ms))))-—>

(Occurs_In_Ms x ms).

Lemma NOI_RhoBar_M1 :
(x:V)(m:M)
“(Occurs_In_M x m)->

“(Occurs_In_L x (rhobar m)).

Lemma NOI_RhoBar_Ms1 :
(x:V)(ms:Ms)
~“(Occurs_In_Ms x ms)—>

“(Occurs_In_L (S x) (rhobar (sc 0 (1lift_Ms O ms)))).

Lemma Drop_RhoBar_Bridge :
(x:V)(m:M)
“(Occurs_In_M x m)->
(drop_L x (rhobar m))=

(rhobar (drop_M x m)).

Lemma Drop_Lift_M_Bridgel :
(m:M) (i,j:nat)
“(Occurs_In_M i m)->

(1t j (s 1))->

22

=

0

APPENDIX B. FULL DEVELOPMENT IN COQ USING DE BRUILJN INDICES

(drop_M (S i) (1ift_M j m))=(1ift_M j (drop_M i m)).

Lemma Drop_Lift_Ms_Bridgel :
(ms:Ms) (i, j:nat)
“(Occurs_In_Ms i ms)->
(1t j (s i))->

(drop_Ms (S i) (lift_Ms j ms))=(lift_Ms j (drop_Ms i ms)).

Definition app_red_m : M->Prop :=
[m:M](x:V)(m1:M)
(L_Permn (app x (rhobar mi) (rhobar m))

(rhobar (MsubstVMV x m1 O m))).

Definition app_red_ms : Ms->Prop :=
[ms:Ms](x,y:V)(m1:M)
(L_Permn (app x (rhobar mi) (rhobar (sc y ms)))

(app x (rhobar m1) (rhobar (sc y ms)))).

Lemma app_red :
((m:M) (app_red_m m))/\
((ms:Ms) (app_red_ms ms)).

Lemma App_Red_M :
(x:V)(m1,m:M)
(L_Permn (app x (rhobar mi) (rhobar m))

(rhobar (MsubstVMV x m1 O m))).

Lemma Norm_Red :

(1:L)(L_Permn 1 (rhobar (phibar 1))).

226

